WKB Analysis of Bohmian Dynamics
We consider a semiclassically scaled Schrödinger equation with WKB initial data. We prove that in the classical limit the corresponding Bohmian trajectories converge (locally in measure) to the classical trajectories before the appearance of the first caustic. In a second step we show that after cau...
Gespeichert in:
Veröffentlicht in: | Communications on pure and applied mathematics 2014-04, Vol.67 (4), p.581-620 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 620 |
---|---|
container_issue | 4 |
container_start_page | 581 |
container_title | Communications on pure and applied mathematics |
container_volume | 67 |
creator | Figalli, A. Klein, C. Markowich, P. Sparber, C. |
description | We consider a semiclassically scaled Schrödinger equation with WKB initial data. We prove that in the classical limit the corresponding Bohmian trajectories converge (locally in measure) to the classical trajectories before the appearance of the first caustic. In a second step we show that after caustic onset this convergence in general no longer holds. In addition, we provide numerical simulations of the Bohmian trajectories in the semiclassical regime that illustrate the above results.© 2014 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/cpa.21487 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1498234078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3219295231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3357-96f10b0c5919805e76e7b7be44e6f9c9e7488525e983b7fd9a246437e3c629d73</originalsourceid><addsrcrecordid>eNp1kE1PAjEQQBujiYge_AebePKwMP3aaY-ACgajHhSOTbd04yKw2EJ0_72rq948TSZ5bzJ5hJxT6FEA1ndb22NUKDwgHQoaU-CUHZIOAIWUZwKOyUmMy2ZtIN4hyXw6TAYbu6pjGZOqSIbVy7q0m-Sq3th16eIpOSrsKvqzn9klzzfXT6NJevcwvh0N7lLHucRUZwWFHJzUVCuQHjOPOeZeCJ8V2mmPQinJpNeK51gstGUiExw9dxnTC-RdctHe3Ybqbe_jziyrfWgei4YKrRgXgKqhLlvKhSrG4AuzDeXahtpQMF8BTBPAfAdo2H7LvpcrX_8PmtHj4NdIW6OMO__xZ9jwajLkKM38fmxmANMZyomR_BOArWe7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1498234078</pqid></control><display><type>article</type><title>WKB Analysis of Bohmian Dynamics</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Figalli, A. ; Klein, C. ; Markowich, P. ; Sparber, C.</creator><creatorcontrib>Figalli, A. ; Klein, C. ; Markowich, P. ; Sparber, C.</creatorcontrib><description>We consider a semiclassically scaled Schrödinger equation with WKB initial data. We prove that in the classical limit the corresponding Bohmian trajectories converge (locally in measure) to the classical trajectories before the appearance of the first caustic. In a second step we show that after caustic onset this convergence in general no longer holds. In addition, we provide numerical simulations of the Bohmian trajectories in the semiclassical regime that illustrate the above results.© 2014 Wiley Periodicals, Inc.</description><identifier>ISSN: 0010-3640</identifier><identifier>EISSN: 1097-0312</identifier><identifier>DOI: 10.1002/cpa.21487</identifier><identifier>CODEN: CPMAMV</identifier><language>eng</language><publisher>New York: Blackwell Publishing Ltd</publisher><subject>Convergence ; Partial differential equations ; Simulation</subject><ispartof>Communications on pure and applied mathematics, 2014-04, Vol.67 (4), p.581-620</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><rights>Copyright John Wiley and Sons, Limited Apr 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3357-96f10b0c5919805e76e7b7be44e6f9c9e7488525e983b7fd9a246437e3c629d73</citedby><cites>FETCH-LOGICAL-c3357-96f10b0c5919805e76e7b7be44e6f9c9e7488525e983b7fd9a246437e3c629d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpa.21487$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpa.21487$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Figalli, A.</creatorcontrib><creatorcontrib>Klein, C.</creatorcontrib><creatorcontrib>Markowich, P.</creatorcontrib><creatorcontrib>Sparber, C.</creatorcontrib><title>WKB Analysis of Bohmian Dynamics</title><title>Communications on pure and applied mathematics</title><addtitle>Commun. Pur. Appl. Math</addtitle><description>We consider a semiclassically scaled Schrödinger equation with WKB initial data. We prove that in the classical limit the corresponding Bohmian trajectories converge (locally in measure) to the classical trajectories before the appearance of the first caustic. In a second step we show that after caustic onset this convergence in general no longer holds. In addition, we provide numerical simulations of the Bohmian trajectories in the semiclassical regime that illustrate the above results.© 2014 Wiley Periodicals, Inc.</description><subject>Convergence</subject><subject>Partial differential equations</subject><subject>Simulation</subject><issn>0010-3640</issn><issn>1097-0312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PAjEQQBujiYge_AebePKwMP3aaY-ACgajHhSOTbd04yKw2EJ0_72rq948TSZ5bzJ5hJxT6FEA1ndb22NUKDwgHQoaU-CUHZIOAIWUZwKOyUmMy2ZtIN4hyXw6TAYbu6pjGZOqSIbVy7q0m-Sq3th16eIpOSrsKvqzn9klzzfXT6NJevcwvh0N7lLHucRUZwWFHJzUVCuQHjOPOeZeCJ8V2mmPQinJpNeK51gstGUiExw9dxnTC-RdctHe3Ybqbe_jziyrfWgei4YKrRgXgKqhLlvKhSrG4AuzDeXahtpQMF8BTBPAfAdo2H7LvpcrX_8PmtHj4NdIW6OMO__xZ9jwajLkKM38fmxmANMZyomR_BOArWe7</recordid><startdate>201404</startdate><enddate>201404</enddate><creator>Figalli, A.</creator><creator>Klein, C.</creator><creator>Markowich, P.</creator><creator>Sparber, C.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons, Limited</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>201404</creationdate><title>WKB Analysis of Bohmian Dynamics</title><author>Figalli, A. ; Klein, C. ; Markowich, P. ; Sparber, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3357-96f10b0c5919805e76e7b7be44e6f9c9e7488525e983b7fd9a246437e3c629d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Convergence</topic><topic>Partial differential equations</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Figalli, A.</creatorcontrib><creatorcontrib>Klein, C.</creatorcontrib><creatorcontrib>Markowich, P.</creatorcontrib><creatorcontrib>Sparber, C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Communications on pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Figalli, A.</au><au>Klein, C.</au><au>Markowich, P.</au><au>Sparber, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WKB Analysis of Bohmian Dynamics</atitle><jtitle>Communications on pure and applied mathematics</jtitle><addtitle>Commun. Pur. Appl. Math</addtitle><date>2014-04</date><risdate>2014</risdate><volume>67</volume><issue>4</issue><spage>581</spage><epage>620</epage><pages>581-620</pages><issn>0010-3640</issn><eissn>1097-0312</eissn><coden>CPMAMV</coden><abstract>We consider a semiclassically scaled Schrödinger equation with WKB initial data. We prove that in the classical limit the corresponding Bohmian trajectories converge (locally in measure) to the classical trajectories before the appearance of the first caustic. In a second step we show that after caustic onset this convergence in general no longer holds. In addition, we provide numerical simulations of the Bohmian trajectories in the semiclassical regime that illustrate the above results.© 2014 Wiley Periodicals, Inc.</abstract><cop>New York</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/cpa.21487</doi><tpages>40</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3640 |
ispartof | Communications on pure and applied mathematics, 2014-04, Vol.67 (4), p.581-620 |
issn | 0010-3640 1097-0312 |
language | eng |
recordid | cdi_proquest_journals_1498234078 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Convergence Partial differential equations Simulation |
title | WKB Analysis of Bohmian Dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WKB%20Analysis%20of%20Bohmian%20Dynamics&rft.jtitle=Communications%20on%20pure%20and%20applied%20mathematics&rft.au=Figalli,%20A.&rft.date=2014-04&rft.volume=67&rft.issue=4&rft.spage=581&rft.epage=620&rft.pages=581-620&rft.issn=0010-3640&rft.eissn=1097-0312&rft.coden=CPMAMV&rft_id=info:doi/10.1002/cpa.21487&rft_dat=%3Cproquest_cross%3E3219295231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1498234078&rft_id=info:pmid/&rfr_iscdi=true |