WKB Analysis of Bohmian Dynamics

We consider a semiclassically scaled Schrödinger equation with WKB initial data. We prove that in the classical limit the corresponding Bohmian trajectories converge (locally in measure) to the classical trajectories before the appearance of the first caustic. In a second step we show that after cau...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications on pure and applied mathematics 2014-04, Vol.67 (4), p.581-620
Hauptverfasser: Figalli, A., Klein, C., Markowich, P., Sparber, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 620
container_issue 4
container_start_page 581
container_title Communications on pure and applied mathematics
container_volume 67
creator Figalli, A.
Klein, C.
Markowich, P.
Sparber, C.
description We consider a semiclassically scaled Schrödinger equation with WKB initial data. We prove that in the classical limit the corresponding Bohmian trajectories converge (locally in measure) to the classical trajectories before the appearance of the first caustic. In a second step we show that after caustic onset this convergence in general no longer holds. In addition, we provide numerical simulations of the Bohmian trajectories in the semiclassical regime that illustrate the above results.© 2014 Wiley Periodicals, Inc.
doi_str_mv 10.1002/cpa.21487
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1498234078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3219295231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3357-96f10b0c5919805e76e7b7be44e6f9c9e7488525e983b7fd9a246437e3c629d73</originalsourceid><addsrcrecordid>eNp1kE1PAjEQQBujiYge_AebePKwMP3aaY-ACgajHhSOTbd04yKw2EJ0_72rq948TSZ5bzJ5hJxT6FEA1ndb22NUKDwgHQoaU-CUHZIOAIWUZwKOyUmMy2ZtIN4hyXw6TAYbu6pjGZOqSIbVy7q0m-Sq3th16eIpOSrsKvqzn9klzzfXT6NJevcwvh0N7lLHucRUZwWFHJzUVCuQHjOPOeZeCJ8V2mmPQinJpNeK51gstGUiExw9dxnTC-RdctHe3Ybqbe_jziyrfWgei4YKrRgXgKqhLlvKhSrG4AuzDeXahtpQMF8BTBPAfAdo2H7LvpcrX_8PmtHj4NdIW6OMO__xZ9jwajLkKM38fmxmANMZyomR_BOArWe7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1498234078</pqid></control><display><type>article</type><title>WKB Analysis of Bohmian Dynamics</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Figalli, A. ; Klein, C. ; Markowich, P. ; Sparber, C.</creator><creatorcontrib>Figalli, A. ; Klein, C. ; Markowich, P. ; Sparber, C.</creatorcontrib><description>We consider a semiclassically scaled Schrödinger equation with WKB initial data. We prove that in the classical limit the corresponding Bohmian trajectories converge (locally in measure) to the classical trajectories before the appearance of the first caustic. In a second step we show that after caustic onset this convergence in general no longer holds. In addition, we provide numerical simulations of the Bohmian trajectories in the semiclassical regime that illustrate the above results.© 2014 Wiley Periodicals, Inc.</description><identifier>ISSN: 0010-3640</identifier><identifier>EISSN: 1097-0312</identifier><identifier>DOI: 10.1002/cpa.21487</identifier><identifier>CODEN: CPMAMV</identifier><language>eng</language><publisher>New York: Blackwell Publishing Ltd</publisher><subject>Convergence ; Partial differential equations ; Simulation</subject><ispartof>Communications on pure and applied mathematics, 2014-04, Vol.67 (4), p.581-620</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><rights>Copyright John Wiley and Sons, Limited Apr 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3357-96f10b0c5919805e76e7b7be44e6f9c9e7488525e983b7fd9a246437e3c629d73</citedby><cites>FETCH-LOGICAL-c3357-96f10b0c5919805e76e7b7be44e6f9c9e7488525e983b7fd9a246437e3c629d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpa.21487$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpa.21487$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Figalli, A.</creatorcontrib><creatorcontrib>Klein, C.</creatorcontrib><creatorcontrib>Markowich, P.</creatorcontrib><creatorcontrib>Sparber, C.</creatorcontrib><title>WKB Analysis of Bohmian Dynamics</title><title>Communications on pure and applied mathematics</title><addtitle>Commun. Pur. Appl. Math</addtitle><description>We consider a semiclassically scaled Schrödinger equation with WKB initial data. We prove that in the classical limit the corresponding Bohmian trajectories converge (locally in measure) to the classical trajectories before the appearance of the first caustic. In a second step we show that after caustic onset this convergence in general no longer holds. In addition, we provide numerical simulations of the Bohmian trajectories in the semiclassical regime that illustrate the above results.© 2014 Wiley Periodicals, Inc.</description><subject>Convergence</subject><subject>Partial differential equations</subject><subject>Simulation</subject><issn>0010-3640</issn><issn>1097-0312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PAjEQQBujiYge_AebePKwMP3aaY-ACgajHhSOTbd04yKw2EJ0_72rq948TSZ5bzJ5hJxT6FEA1ndb22NUKDwgHQoaU-CUHZIOAIWUZwKOyUmMy2ZtIN4hyXw6TAYbu6pjGZOqSIbVy7q0m-Sq3th16eIpOSrsKvqzn9klzzfXT6NJevcwvh0N7lLHucRUZwWFHJzUVCuQHjOPOeZeCJ8V2mmPQinJpNeK51gstGUiExw9dxnTC-RdctHe3Ybqbe_jziyrfWgei4YKrRgXgKqhLlvKhSrG4AuzDeXahtpQMF8BTBPAfAdo2H7LvpcrX_8PmtHj4NdIW6OMO__xZ9jwajLkKM38fmxmANMZyomR_BOArWe7</recordid><startdate>201404</startdate><enddate>201404</enddate><creator>Figalli, A.</creator><creator>Klein, C.</creator><creator>Markowich, P.</creator><creator>Sparber, C.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons, Limited</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>201404</creationdate><title>WKB Analysis of Bohmian Dynamics</title><author>Figalli, A. ; Klein, C. ; Markowich, P. ; Sparber, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3357-96f10b0c5919805e76e7b7be44e6f9c9e7488525e983b7fd9a246437e3c629d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Convergence</topic><topic>Partial differential equations</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Figalli, A.</creatorcontrib><creatorcontrib>Klein, C.</creatorcontrib><creatorcontrib>Markowich, P.</creatorcontrib><creatorcontrib>Sparber, C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Communications on pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Figalli, A.</au><au>Klein, C.</au><au>Markowich, P.</au><au>Sparber, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WKB Analysis of Bohmian Dynamics</atitle><jtitle>Communications on pure and applied mathematics</jtitle><addtitle>Commun. Pur. Appl. Math</addtitle><date>2014-04</date><risdate>2014</risdate><volume>67</volume><issue>4</issue><spage>581</spage><epage>620</epage><pages>581-620</pages><issn>0010-3640</issn><eissn>1097-0312</eissn><coden>CPMAMV</coden><abstract>We consider a semiclassically scaled Schrödinger equation with WKB initial data. We prove that in the classical limit the corresponding Bohmian trajectories converge (locally in measure) to the classical trajectories before the appearance of the first caustic. In a second step we show that after caustic onset this convergence in general no longer holds. In addition, we provide numerical simulations of the Bohmian trajectories in the semiclassical regime that illustrate the above results.© 2014 Wiley Periodicals, Inc.</abstract><cop>New York</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/cpa.21487</doi><tpages>40</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-3640
ispartof Communications on pure and applied mathematics, 2014-04, Vol.67 (4), p.581-620
issn 0010-3640
1097-0312
language eng
recordid cdi_proquest_journals_1498234078
source Wiley Online Library Journals Frontfile Complete
subjects Convergence
Partial differential equations
Simulation
title WKB Analysis of Bohmian Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WKB%20Analysis%20of%20Bohmian%20Dynamics&rft.jtitle=Communications%20on%20pure%20and%20applied%20mathematics&rft.au=Figalli,%20A.&rft.date=2014-04&rft.volume=67&rft.issue=4&rft.spage=581&rft.epage=620&rft.pages=581-620&rft.issn=0010-3640&rft.eissn=1097-0312&rft.coden=CPMAMV&rft_id=info:doi/10.1002/cpa.21487&rft_dat=%3Cproquest_cross%3E3219295231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1498234078&rft_id=info:pmid/&rfr_iscdi=true