Abelianity Conjecture for Special Compact Kähler 3-Folds

Using orbifold metrics of the appropriately signed Ricci curvature on orbifolds with a negative or numerically trivial canonical bundle and the two-dimensional log minimal model programme, we prove that the fundamental group of special compact Kähler 3-folds is almost abelian. This property was conj...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Edinburgh Mathematical Society 2014-02, Vol.57 (1), p.55-78
Hauptverfasser: Campana, Fréderic, Claudon, Benoît
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 78
container_issue 1
container_start_page 55
container_title Proceedings of the Edinburgh Mathematical Society
container_volume 57
creator Campana, Fréderic
Claudon, Benoît
description Using orbifold metrics of the appropriately signed Ricci curvature on orbifolds with a negative or numerically trivial canonical bundle and the two-dimensional log minimal model programme, we prove that the fundamental group of special compact Kähler 3-folds is almost abelian. This property was conjectured in all dimensions by Campana in 2004, and also for orbifolds in 2007, where the notion of specialness was introduced. We briefly recall the definition, basic properties and the role of special manifolds in classification theory.
doi_str_mv 10.1017/S0013091513000849
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1498069894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0013091513000849</cupid><sourcerecordid>3218319251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-356d16a7e49206ed2d1e5f9c1c5d810ae01c5e2988a016ed3d0195edcaeb64c33</originalsourceid><addsrcrecordid>eNp1UL1OwzAQthBIlMIDsEViDtzFjmOPVUUBUYmhMEeOfYFUaRPsZOj78Ca8GK7aAQmx3J3u-5M-xq4RbhGwuFsBIAeNeZwASugTNkEhRcoV16dssofTPX7OLkJYR05R5DhhelZR25htM-ySebddkx1GT0nd-WTVk21MG9-b3tghef7--mjJJzxddK0Ll-ysNm2gq-OesrfF_ev8MV2-PDzNZ8vUcglDynPpUJqChM5AksscUl5rizZ3CsEQxIsyrZQBjDh3gDonZw1VUljOp-zm4Nv77nOkMJTrbvTbGFmi0AqkVlpEFh5Y1ncheKrL3jcb43clQrlvqPzTUNTwo8ZsKt-4d_pl_a_qB0q-Zro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1498069894</pqid></control><display><type>article</type><title>Abelianity Conjecture for Special Compact Kähler 3-Folds</title><source>Cambridge University Press Journals Complete</source><creator>Campana, Fréderic ; Claudon, Benoît</creator><creatorcontrib>Campana, Fréderic ; Claudon, Benoît</creatorcontrib><description>Using orbifold metrics of the appropriately signed Ricci curvature on orbifolds with a negative or numerically trivial canonical bundle and the two-dimensional log minimal model programme, we prove that the fundamental group of special compact Kähler 3-folds is almost abelian. This property was conjectured in all dimensions by Campana in 2004, and also for orbifolds in 2007, where the notion of specialness was introduced. We briefly recall the definition, basic properties and the role of special manifolds in classification theory.</description><identifier>ISSN: 0013-0915</identifier><identifier>EISSN: 1464-3839</identifier><identifier>DOI: 10.1017/S0013091513000849</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Classification ; Mathematics ; Metric system</subject><ispartof>Proceedings of the Edinburgh Mathematical Society, 2014-02, Vol.57 (1), p.55-78</ispartof><rights>Copyright © Edinburgh Mathematical Society 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-356d16a7e49206ed2d1e5f9c1c5d810ae01c5e2988a016ed3d0195edcaeb64c33</citedby><cites>FETCH-LOGICAL-c360t-356d16a7e49206ed2d1e5f9c1c5d810ae01c5e2988a016ed3d0195edcaeb64c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0013091513000849/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,778,782,27907,27908,55611</link.rule.ids></links><search><creatorcontrib>Campana, Fréderic</creatorcontrib><creatorcontrib>Claudon, Benoît</creatorcontrib><title>Abelianity Conjecture for Special Compact Kähler 3-Folds</title><title>Proceedings of the Edinburgh Mathematical Society</title><addtitle>Proceedings of the Edinburgh Mathematical Society</addtitle><description>Using orbifold metrics of the appropriately signed Ricci curvature on orbifolds with a negative or numerically trivial canonical bundle and the two-dimensional log minimal model programme, we prove that the fundamental group of special compact Kähler 3-folds is almost abelian. This property was conjectured in all dimensions by Campana in 2004, and also for orbifolds in 2007, where the notion of specialness was introduced. We briefly recall the definition, basic properties and the role of special manifolds in classification theory.</description><subject>Classification</subject><subject>Mathematics</subject><subject>Metric system</subject><issn>0013-0915</issn><issn>1464-3839</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UL1OwzAQthBIlMIDsEViDtzFjmOPVUUBUYmhMEeOfYFUaRPsZOj78Ca8GK7aAQmx3J3u-5M-xq4RbhGwuFsBIAeNeZwASugTNkEhRcoV16dssofTPX7OLkJYR05R5DhhelZR25htM-ySebddkx1GT0nd-WTVk21MG9-b3tghef7--mjJJzxddK0Ll-ysNm2gq-OesrfF_ev8MV2-PDzNZ8vUcglDynPpUJqChM5AksscUl5rizZ3CsEQxIsyrZQBjDh3gDonZw1VUljOp-zm4Nv77nOkMJTrbvTbGFmi0AqkVlpEFh5Y1ncheKrL3jcb43clQrlvqPzTUNTwo8ZsKt-4d_pl_a_qB0q-Zro</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Campana, Fréderic</creator><creator>Claudon, Benoît</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20140201</creationdate><title>Abelianity Conjecture for Special Compact Kähler 3-Folds</title><author>Campana, Fréderic ; Claudon, Benoît</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-356d16a7e49206ed2d1e5f9c1c5d810ae01c5e2988a016ed3d0195edcaeb64c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Classification</topic><topic>Mathematics</topic><topic>Metric system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campana, Fréderic</creatorcontrib><creatorcontrib>Claudon, Benoît</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the Edinburgh Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campana, Fréderic</au><au>Claudon, Benoît</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abelianity Conjecture for Special Compact Kähler 3-Folds</atitle><jtitle>Proceedings of the Edinburgh Mathematical Society</jtitle><addtitle>Proceedings of the Edinburgh Mathematical Society</addtitle><date>2014-02-01</date><risdate>2014</risdate><volume>57</volume><issue>1</issue><spage>55</spage><epage>78</epage><pages>55-78</pages><issn>0013-0915</issn><eissn>1464-3839</eissn><abstract>Using orbifold metrics of the appropriately signed Ricci curvature on orbifolds with a negative or numerically trivial canonical bundle and the two-dimensional log minimal model programme, we prove that the fundamental group of special compact Kähler 3-folds is almost abelian. This property was conjectured in all dimensions by Campana in 2004, and also for orbifolds in 2007, where the notion of specialness was introduced. We briefly recall the definition, basic properties and the role of special manifolds in classification theory.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0013091513000849</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-0915
ispartof Proceedings of the Edinburgh Mathematical Society, 2014-02, Vol.57 (1), p.55-78
issn 0013-0915
1464-3839
language eng
recordid cdi_proquest_journals_1498069894
source Cambridge University Press Journals Complete
subjects Classification
Mathematics
Metric system
title Abelianity Conjecture for Special Compact Kähler 3-Folds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A00%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abelianity%20Conjecture%20for%20Special%20Compact%20K%C3%A4hler%203-Folds&rft.jtitle=Proceedings%20of%20the%20Edinburgh%20Mathematical%20Society&rft.au=Campana,%20Fr%C3%A9deric&rft.date=2014-02-01&rft.volume=57&rft.issue=1&rft.spage=55&rft.epage=78&rft.pages=55-78&rft.issn=0013-0915&rft.eissn=1464-3839&rft_id=info:doi/10.1017/S0013091513000849&rft_dat=%3Cproquest_cross%3E3218319251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1498069894&rft_id=info:pmid/&rft_cupid=10_1017_S0013091513000849&rfr_iscdi=true