Abelianity Conjecture for Special Compact Kähler 3-Folds
Using orbifold metrics of the appropriately signed Ricci curvature on orbifolds with a negative or numerically trivial canonical bundle and the two-dimensional log minimal model programme, we prove that the fundamental group of special compact Kähler 3-folds is almost abelian. This property was conj...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Edinburgh Mathematical Society 2014-02, Vol.57 (1), p.55-78 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 78 |
---|---|
container_issue | 1 |
container_start_page | 55 |
container_title | Proceedings of the Edinburgh Mathematical Society |
container_volume | 57 |
creator | Campana, Fréderic Claudon, Benoît |
description | Using orbifold metrics of the appropriately signed Ricci curvature on orbifolds with a negative or numerically trivial canonical bundle and the two-dimensional log minimal model programme, we prove that the fundamental group of special compact Kähler 3-folds is almost abelian. This property was conjectured in all dimensions by Campana in 2004, and also for orbifolds in 2007, where the notion of specialness was introduced. We briefly recall the definition, basic properties and the role of special manifolds in classification theory. |
doi_str_mv | 10.1017/S0013091513000849 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1498069894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0013091513000849</cupid><sourcerecordid>3218319251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-356d16a7e49206ed2d1e5f9c1c5d810ae01c5e2988a016ed3d0195edcaeb64c33</originalsourceid><addsrcrecordid>eNp1UL1OwzAQthBIlMIDsEViDtzFjmOPVUUBUYmhMEeOfYFUaRPsZOj78Ca8GK7aAQmx3J3u-5M-xq4RbhGwuFsBIAeNeZwASugTNkEhRcoV16dssofTPX7OLkJYR05R5DhhelZR25htM-ySebddkx1GT0nd-WTVk21MG9-b3tghef7--mjJJzxddK0Ll-ysNm2gq-OesrfF_ev8MV2-PDzNZ8vUcglDynPpUJqChM5AksscUl5rizZ3CsEQxIsyrZQBjDh3gDonZw1VUljOp-zm4Nv77nOkMJTrbvTbGFmi0AqkVlpEFh5Y1ncheKrL3jcb43clQrlvqPzTUNTwo8ZsKt-4d_pl_a_qB0q-Zro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1498069894</pqid></control><display><type>article</type><title>Abelianity Conjecture for Special Compact Kähler 3-Folds</title><source>Cambridge University Press Journals Complete</source><creator>Campana, Fréderic ; Claudon, Benoît</creator><creatorcontrib>Campana, Fréderic ; Claudon, Benoît</creatorcontrib><description>Using orbifold metrics of the appropriately signed Ricci curvature on orbifolds with a negative or numerically trivial canonical bundle and the two-dimensional log minimal model programme, we prove that the fundamental group of special compact Kähler 3-folds is almost abelian. This property was conjectured in all dimensions by Campana in 2004, and also for orbifolds in 2007, where the notion of specialness was introduced. We briefly recall the definition, basic properties and the role of special manifolds in classification theory.</description><identifier>ISSN: 0013-0915</identifier><identifier>EISSN: 1464-3839</identifier><identifier>DOI: 10.1017/S0013091513000849</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Classification ; Mathematics ; Metric system</subject><ispartof>Proceedings of the Edinburgh Mathematical Society, 2014-02, Vol.57 (1), p.55-78</ispartof><rights>Copyright © Edinburgh Mathematical Society 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-356d16a7e49206ed2d1e5f9c1c5d810ae01c5e2988a016ed3d0195edcaeb64c33</citedby><cites>FETCH-LOGICAL-c360t-356d16a7e49206ed2d1e5f9c1c5d810ae01c5e2988a016ed3d0195edcaeb64c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0013091513000849/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,778,782,27907,27908,55611</link.rule.ids></links><search><creatorcontrib>Campana, Fréderic</creatorcontrib><creatorcontrib>Claudon, Benoît</creatorcontrib><title>Abelianity Conjecture for Special Compact Kähler 3-Folds</title><title>Proceedings of the Edinburgh Mathematical Society</title><addtitle>Proceedings of the Edinburgh Mathematical Society</addtitle><description>Using orbifold metrics of the appropriately signed Ricci curvature on orbifolds with a negative or numerically trivial canonical bundle and the two-dimensional log minimal model programme, we prove that the fundamental group of special compact Kähler 3-folds is almost abelian. This property was conjectured in all dimensions by Campana in 2004, and also for orbifolds in 2007, where the notion of specialness was introduced. We briefly recall the definition, basic properties and the role of special manifolds in classification theory.</description><subject>Classification</subject><subject>Mathematics</subject><subject>Metric system</subject><issn>0013-0915</issn><issn>1464-3839</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UL1OwzAQthBIlMIDsEViDtzFjmOPVUUBUYmhMEeOfYFUaRPsZOj78Ca8GK7aAQmx3J3u-5M-xq4RbhGwuFsBIAeNeZwASugTNkEhRcoV16dssofTPX7OLkJYR05R5DhhelZR25htM-ySebddkx1GT0nd-WTVk21MG9-b3tghef7--mjJJzxddK0Ll-ysNm2gq-OesrfF_ev8MV2-PDzNZ8vUcglDynPpUJqChM5AksscUl5rizZ3CsEQxIsyrZQBjDh3gDonZw1VUljOp-zm4Nv77nOkMJTrbvTbGFmi0AqkVlpEFh5Y1ncheKrL3jcb43clQrlvqPzTUNTwo8ZsKt-4d_pl_a_qB0q-Zro</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Campana, Fréderic</creator><creator>Claudon, Benoît</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20140201</creationdate><title>Abelianity Conjecture for Special Compact Kähler 3-Folds</title><author>Campana, Fréderic ; Claudon, Benoît</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-356d16a7e49206ed2d1e5f9c1c5d810ae01c5e2988a016ed3d0195edcaeb64c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Classification</topic><topic>Mathematics</topic><topic>Metric system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campana, Fréderic</creatorcontrib><creatorcontrib>Claudon, Benoît</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the Edinburgh Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campana, Fréderic</au><au>Claudon, Benoît</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abelianity Conjecture for Special Compact Kähler 3-Folds</atitle><jtitle>Proceedings of the Edinburgh Mathematical Society</jtitle><addtitle>Proceedings of the Edinburgh Mathematical Society</addtitle><date>2014-02-01</date><risdate>2014</risdate><volume>57</volume><issue>1</issue><spage>55</spage><epage>78</epage><pages>55-78</pages><issn>0013-0915</issn><eissn>1464-3839</eissn><abstract>Using orbifold metrics of the appropriately signed Ricci curvature on orbifolds with a negative or numerically trivial canonical bundle and the two-dimensional log minimal model programme, we prove that the fundamental group of special compact Kähler 3-folds is almost abelian. This property was conjectured in all dimensions by Campana in 2004, and also for orbifolds in 2007, where the notion of specialness was introduced. We briefly recall the definition, basic properties and the role of special manifolds in classification theory.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0013091513000849</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-0915 |
ispartof | Proceedings of the Edinburgh Mathematical Society, 2014-02, Vol.57 (1), p.55-78 |
issn | 0013-0915 1464-3839 |
language | eng |
recordid | cdi_proquest_journals_1498069894 |
source | Cambridge University Press Journals Complete |
subjects | Classification Mathematics Metric system |
title | Abelianity Conjecture for Special Compact Kähler 3-Folds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A00%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abelianity%20Conjecture%20for%20Special%20Compact%20K%C3%A4hler%203-Folds&rft.jtitle=Proceedings%20of%20the%20Edinburgh%20Mathematical%20Society&rft.au=Campana,%20Fr%C3%A9deric&rft.date=2014-02-01&rft.volume=57&rft.issue=1&rft.spage=55&rft.epage=78&rft.pages=55-78&rft.issn=0013-0915&rft.eissn=1464-3839&rft_id=info:doi/10.1017/S0013091513000849&rft_dat=%3Cproquest_cross%3E3218319251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1498069894&rft_id=info:pmid/&rft_cupid=10_1017_S0013091513000849&rfr_iscdi=true |