Forecasting period charter rates of VLCC tankers through neural networks: A comparison of alternative approaches

Volume-wise, seaborne crude oil represents close to 45 per cent of all internationally traded crude oil – thus remaining as the modern world primary source of energy. The usual focus in seaborne freight rate forecasting literature is the spot rate, whereas, on the other hand, a limited amount of lit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Maritime economics & logistics 2014-03, Vol.16 (1), p.72-91
Hauptverfasser: Santos, André A P, Junkes, Luciano N, Pires Jr, Floriano C M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 91
container_issue 1
container_start_page 72
container_title Maritime economics & logistics
container_volume 16
creator Santos, André A P
Junkes, Luciano N
Pires Jr, Floriano C M
description Volume-wise, seaborne crude oil represents close to 45 per cent of all internationally traded crude oil – thus remaining as the modern world primary source of energy. The usual focus in seaborne freight rate forecasting literature is the spot rate, whereas, on the other hand, a limited amount of literature has been directed towards period charter rates. To the same extent, there is a scarce amount of literature available dealing with the use of artificial neural networks (NNs) in forecasting seaborne transport market rates. This article focuses on applying NNs to period charter rates forecasting of very large crude carriers. The performance achieved for 1- and 3-year period charter rate time series by two different NN models (multi-layer perceptron and radial basis function (RBF)) is benchmarked against a more elementary performance delivered by an autoregressive integrated moving average (ARIMA) model. We find that NN modelling delivers encouraging end results outperforming the benchmark model (ARIMA). We can also point out that NN using RBFs delivers the best overall predictive performance.
doi_str_mv 10.1057/mel.2013.20
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1497086737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3215614691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-cbb1f1b69a6f29839aec5ae8b1b91a643b7bf047827003372669d0b32dfdb0683</originalsourceid><addsrcrecordid>eNptkEFLxDAQhYMouK6e_AMBj9o1abpN602Kq8KCFxVvZZKm2-52mzpJFf-9WVbEg5d5w_DNm-ERcs7ZjLO5vN6abhYzLkI5IBOeyDyK8-Tt8LcX_JicOLdmLMznYkKGhUWjwfm2X9HBYGsrqhtAb5AieOOorenrsiioh35j0FHfoB1XDe3NiNAF8Z8WN-6G3lJttwNg62y_24IumPTg2w9DYRjQgm6MOyVHNXTOnP3olLws7p6Lh2j5dP9Y3C4jLQT3kVaK11ylOaR1nGciB6PnYDLFVc4hTYSSqmaJzGLJmBAyTtO8YkrEVV0plmZiSi72vuHw-2icL9d2DO90ruRJLlmWSiEDdbmnNFrn0NTlgO0W8KvkrNxFWoZIy12koQT6ak-7QPUrg388_8G_ARRiec8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1497086737</pqid></control><display><type>article</type><title>Forecasting period charter rates of VLCC tankers through neural networks: A comparison of alternative approaches</title><source>SpringerLink Journals - AutoHoldings</source><creator>Santos, André A P ; Junkes, Luciano N ; Pires Jr, Floriano C M</creator><creatorcontrib>Santos, André A P ; Junkes, Luciano N ; Pires Jr, Floriano C M</creatorcontrib><description>Volume-wise, seaborne crude oil represents close to 45 per cent of all internationally traded crude oil – thus remaining as the modern world primary source of energy. The usual focus in seaborne freight rate forecasting literature is the spot rate, whereas, on the other hand, a limited amount of literature has been directed towards period charter rates. To the same extent, there is a scarce amount of literature available dealing with the use of artificial neural networks (NNs) in forecasting seaborne transport market rates. This article focuses on applying NNs to period charter rates forecasting of very large crude carriers. The performance achieved for 1- and 3-year period charter rate time series by two different NN models (multi-layer perceptron and radial basis function (RBF)) is benchmarked against a more elementary performance delivered by an autoregressive integrated moving average (ARIMA) model. We find that NN modelling delivers encouraging end results outperforming the benchmark model (ARIMA). We can also point out that NN using RBFs delivers the best overall predictive performance.</description><identifier>ISSN: 1479-2931</identifier><identifier>EISSN: 1479-294X</identifier><identifier>DOI: 10.1057/mel.2013.20</identifier><language>eng</language><publisher>London: Palgrave Macmillan UK</publisher><subject>Business and Management ; Charters ; Crude oil ; Econometrics ; Energy consumption ; Forecasting ; Forecasting techniques ; Logistics ; Neural networks ; Operations Management ; Original Article ; Sea transport ; Studies ; Supply &amp; demand ; Tanker ships ; Time series</subject><ispartof>Maritime economics &amp; logistics, 2014-03, Vol.16 (1), p.72-91</ispartof><rights>Palgrave Macmillan, a division of Macmillan Publishers Ltd 2013</rights><rights>Palgrave Macmillan, a division of Macmillan Publishers Ltd 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-cbb1f1b69a6f29839aec5ae8b1b91a643b7bf047827003372669d0b32dfdb0683</citedby><cites>FETCH-LOGICAL-c331t-cbb1f1b69a6f29839aec5ae8b1b91a643b7bf047827003372669d0b32dfdb0683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1057/mel.2013.20$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1057/mel.2013.20$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Santos, André A P</creatorcontrib><creatorcontrib>Junkes, Luciano N</creatorcontrib><creatorcontrib>Pires Jr, Floriano C M</creatorcontrib><title>Forecasting period charter rates of VLCC tankers through neural networks: A comparison of alternative approaches</title><title>Maritime economics &amp; logistics</title><addtitle>Marit Econ Logist</addtitle><description>Volume-wise, seaborne crude oil represents close to 45 per cent of all internationally traded crude oil – thus remaining as the modern world primary source of energy. The usual focus in seaborne freight rate forecasting literature is the spot rate, whereas, on the other hand, a limited amount of literature has been directed towards period charter rates. To the same extent, there is a scarce amount of literature available dealing with the use of artificial neural networks (NNs) in forecasting seaborne transport market rates. This article focuses on applying NNs to period charter rates forecasting of very large crude carriers. The performance achieved for 1- and 3-year period charter rate time series by two different NN models (multi-layer perceptron and radial basis function (RBF)) is benchmarked against a more elementary performance delivered by an autoregressive integrated moving average (ARIMA) model. We find that NN modelling delivers encouraging end results outperforming the benchmark model (ARIMA). We can also point out that NN using RBFs delivers the best overall predictive performance.</description><subject>Business and Management</subject><subject>Charters</subject><subject>Crude oil</subject><subject>Econometrics</subject><subject>Energy consumption</subject><subject>Forecasting</subject><subject>Forecasting techniques</subject><subject>Logistics</subject><subject>Neural networks</subject><subject>Operations Management</subject><subject>Original Article</subject><subject>Sea transport</subject><subject>Studies</subject><subject>Supply &amp; demand</subject><subject>Tanker ships</subject><subject>Time series</subject><issn>1479-2931</issn><issn>1479-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkEFLxDAQhYMouK6e_AMBj9o1abpN602Kq8KCFxVvZZKm2-52mzpJFf-9WVbEg5d5w_DNm-ERcs7ZjLO5vN6abhYzLkI5IBOeyDyK8-Tt8LcX_JicOLdmLMznYkKGhUWjwfm2X9HBYGsrqhtAb5AieOOorenrsiioh35j0FHfoB1XDe3NiNAF8Z8WN-6G3lJttwNg62y_24IumPTg2w9DYRjQgm6MOyVHNXTOnP3olLws7p6Lh2j5dP9Y3C4jLQT3kVaK11ylOaR1nGciB6PnYDLFVc4hTYSSqmaJzGLJmBAyTtO8YkrEVV0plmZiSi72vuHw-2icL9d2DO90ruRJLlmWSiEDdbmnNFrn0NTlgO0W8KvkrNxFWoZIy12koQT6ak-7QPUrg388_8G_ARRiec8</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Santos, André A P</creator><creator>Junkes, Luciano N</creator><creator>Pires Jr, Floriano C M</creator><general>Palgrave Macmillan UK</general><general>Palgrave Macmillan</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20140301</creationdate><title>Forecasting period charter rates of VLCC tankers through neural networks: A comparison of alternative approaches</title><author>Santos, André A P ; Junkes, Luciano N ; Pires Jr, Floriano C M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-cbb1f1b69a6f29839aec5ae8b1b91a643b7bf047827003372669d0b32dfdb0683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Business and Management</topic><topic>Charters</topic><topic>Crude oil</topic><topic>Econometrics</topic><topic>Energy consumption</topic><topic>Forecasting</topic><topic>Forecasting techniques</topic><topic>Logistics</topic><topic>Neural networks</topic><topic>Operations Management</topic><topic>Original Article</topic><topic>Sea transport</topic><topic>Studies</topic><topic>Supply &amp; demand</topic><topic>Tanker ships</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, André A P</creatorcontrib><creatorcontrib>Junkes, Luciano N</creatorcontrib><creatorcontrib>Pires Jr, Floriano C M</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Maritime economics &amp; logistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, André A P</au><au>Junkes, Luciano N</au><au>Pires Jr, Floriano C M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting period charter rates of VLCC tankers through neural networks: A comparison of alternative approaches</atitle><jtitle>Maritime economics &amp; logistics</jtitle><stitle>Marit Econ Logist</stitle><date>2014-03-01</date><risdate>2014</risdate><volume>16</volume><issue>1</issue><spage>72</spage><epage>91</epage><pages>72-91</pages><issn>1479-2931</issn><eissn>1479-294X</eissn><abstract>Volume-wise, seaborne crude oil represents close to 45 per cent of all internationally traded crude oil – thus remaining as the modern world primary source of energy. The usual focus in seaborne freight rate forecasting literature is the spot rate, whereas, on the other hand, a limited amount of literature has been directed towards period charter rates. To the same extent, there is a scarce amount of literature available dealing with the use of artificial neural networks (NNs) in forecasting seaborne transport market rates. This article focuses on applying NNs to period charter rates forecasting of very large crude carriers. The performance achieved for 1- and 3-year period charter rate time series by two different NN models (multi-layer perceptron and radial basis function (RBF)) is benchmarked against a more elementary performance delivered by an autoregressive integrated moving average (ARIMA) model. We find that NN modelling delivers encouraging end results outperforming the benchmark model (ARIMA). We can also point out that NN using RBFs delivers the best overall predictive performance.</abstract><cop>London</cop><pub>Palgrave Macmillan UK</pub><doi>10.1057/mel.2013.20</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1479-2931
ispartof Maritime economics & logistics, 2014-03, Vol.16 (1), p.72-91
issn 1479-2931
1479-294X
language eng
recordid cdi_proquest_journals_1497086737
source SpringerLink Journals - AutoHoldings
subjects Business and Management
Charters
Crude oil
Econometrics
Energy consumption
Forecasting
Forecasting techniques
Logistics
Neural networks
Operations Management
Original Article
Sea transport
Studies
Supply & demand
Tanker ships
Time series
title Forecasting period charter rates of VLCC tankers through neural networks: A comparison of alternative approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A12%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20period%20charter%20rates%20of%20VLCC%20tankers%20through%20neural%20networks:%20A%20comparison%20of%20alternative%20approaches&rft.jtitle=Maritime%20economics%20&%20logistics&rft.au=Santos,%20Andr%C3%A9%20A%20P&rft.date=2014-03-01&rft.volume=16&rft.issue=1&rft.spage=72&rft.epage=91&rft.pages=72-91&rft.issn=1479-2931&rft.eissn=1479-294X&rft_id=info:doi/10.1057/mel.2013.20&rft_dat=%3Cproquest_cross%3E3215614691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1497086737&rft_id=info:pmid/&rfr_iscdi=true