Smale’s Fundamental Theorem of Algebra Reconsidered

In his 1981 Fundamental Theorem of Algebra paper Steve Smale initiated the complexity theory of finding a solution of polynomial equations of one complex variable by a variant of Newton’s method. In this paper we reconsider his algorithm in the light of work done in the intervening years. Smale’s up...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics 2014-02, Vol.14 (1), p.85-114
Hauptverfasser: Armentano, Diego, Shub, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114
container_issue 1
container_start_page 85
container_title Foundations of computational mathematics
container_volume 14
creator Armentano, Diego
Shub, Michael
description In his 1981 Fundamental Theorem of Algebra paper Steve Smale initiated the complexity theory of finding a solution of polynomial equations of one complex variable by a variant of Newton’s method. In this paper we reconsider his algorithm in the light of work done in the intervening years. Smale’s upper bound estimate was infinite average cost. Ours is polynomial in the Bézout number and the dimension of the input. Hence it is polynomial for any range of dimensions where the Bézout number is polynomial in the input size. In particular it is not just for the case that Smale considered but for a range of dimensions as considered by Bürgisser–Cucker, where the max of the degrees is greater than or equal to n 1+ ϵ for some fixed ϵ . It is possible that Smale’s algorithm is polynomial cost in all dimensions and our main theorem raises some problems that might lead to a proof of such a theorem.
doi_str_mv 10.1007/s10208-013-9155-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1493101461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A378557825</galeid><sourcerecordid>A378557825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-1edeb93c010d731d6ab175720079ca4d744a6f05d7354627aca56ebb5f7584ac3</originalsourceid><addsrcrecordid>eNp1kd9KwzAUh4soqNMH8K7glRedOU1O016O4XQgCDqvQ5qe1kr_aNKBu_M1fD2fxIyJOpjkIuHk-5KT_ILgDNgYGJOXDljM0ogBjzJAjFZ7wREkgBHnKd__WUs8DI6de2YMMANxFOBDqxv6fP9w4WzZFbqlbtBNuHii3lIb9mU4aSrKrQ7vyfSdqwuyVJwEB6VuHJ1-z6PgcXa1mN5Et3fX8-nkNjICcYiACsozbhiwQnIoEp2DRBn7hjOjRSGF0EnJ0G-iSGKpjcaE8hxLianQho-C8825L7Z_XZIb1HO_tJ2_UoHIODAQCfxSlX-KqruyH6w2be2MmnCZIso0Rk9FO6iKOrK66Tsqa1_e4sc7eD8KamuzU7jYEjwz0NtQ6aVzav5wv83ChjW2d85SqV5s3Wq7UsDUOlC1CVT5QNU6ULXyTrxxnGe7iuyfz_hX-gK9_6Am</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1493101461</pqid></control><display><type>article</type><title>Smale’s Fundamental Theorem of Algebra Reconsidered</title><source>SpringerLink (Online service)</source><creator>Armentano, Diego ; Shub, Michael</creator><creatorcontrib>Armentano, Diego ; Shub, Michael</creatorcontrib><description>In his 1981 Fundamental Theorem of Algebra paper Steve Smale initiated the complexity theory of finding a solution of polynomial equations of one complex variable by a variant of Newton’s method. In this paper we reconsider his algorithm in the light of work done in the intervening years. Smale’s upper bound estimate was infinite average cost. Ours is polynomial in the Bézout number and the dimension of the input. Hence it is polynomial for any range of dimensions where the Bézout number is polynomial in the input size. In particular it is not just for the case that Smale considered but for a range of dimensions as considered by Bürgisser–Cucker, where the max of the degrees is greater than or equal to n 1+ ϵ for some fixed ϵ . It is possible that Smale’s algorithm is polynomial cost in all dimensions and our main theorem raises some problems that might lead to a proof of such a theorem.</description><identifier>ISSN: 1615-3375</identifier><identifier>EISSN: 1615-3383</identifier><identifier>DOI: 10.1007/s10208-013-9155-y</identifier><identifier>CODEN: FCMOA3</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algebra ; Applications of Mathematics ; Computational mathematics ; Computer Science ; Economics ; Linear and Multilinear Algebras ; Math Applications in Computer Science ; Mathematical research ; Mathematics ; Mathematics and Statistics ; Matrix Theory ; Numerical Analysis ; Polynomials ; Theorems (Mathematics) ; Theory</subject><ispartof>Foundations of computational mathematics, 2014-02, Vol.14 (1), p.85-114</ispartof><rights>SFoCM 2013</rights><rights>COPYRIGHT 2014 Springer</rights><rights>SFoCM 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-1edeb93c010d731d6ab175720079ca4d744a6f05d7354627aca56ebb5f7584ac3</citedby><cites>FETCH-LOGICAL-c455t-1edeb93c010d731d6ab175720079ca4d744a6f05d7354627aca56ebb5f7584ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10208-013-9155-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10208-013-9155-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Armentano, Diego</creatorcontrib><creatorcontrib>Shub, Michael</creatorcontrib><title>Smale’s Fundamental Theorem of Algebra Reconsidered</title><title>Foundations of computational mathematics</title><addtitle>Found Comput Math</addtitle><description>In his 1981 Fundamental Theorem of Algebra paper Steve Smale initiated the complexity theory of finding a solution of polynomial equations of one complex variable by a variant of Newton’s method. In this paper we reconsider his algorithm in the light of work done in the intervening years. Smale’s upper bound estimate was infinite average cost. Ours is polynomial in the Bézout number and the dimension of the input. Hence it is polynomial for any range of dimensions where the Bézout number is polynomial in the input size. In particular it is not just for the case that Smale considered but for a range of dimensions as considered by Bürgisser–Cucker, where the max of the degrees is greater than or equal to n 1+ ϵ for some fixed ϵ . It is possible that Smale’s algorithm is polynomial cost in all dimensions and our main theorem raises some problems that might lead to a proof of such a theorem.</description><subject>Algebra</subject><subject>Applications of Mathematics</subject><subject>Computational mathematics</subject><subject>Computer Science</subject><subject>Economics</subject><subject>Linear and Multilinear Algebras</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical research</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix Theory</subject><subject>Numerical Analysis</subject><subject>Polynomials</subject><subject>Theorems (Mathematics)</subject><subject>Theory</subject><issn>1615-3375</issn><issn>1615-3383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kd9KwzAUh4soqNMH8K7glRedOU1O016O4XQgCDqvQ5qe1kr_aNKBu_M1fD2fxIyJOpjkIuHk-5KT_ILgDNgYGJOXDljM0ogBjzJAjFZ7wREkgBHnKd__WUs8DI6de2YMMANxFOBDqxv6fP9w4WzZFbqlbtBNuHii3lIb9mU4aSrKrQ7vyfSdqwuyVJwEB6VuHJ1-z6PgcXa1mN5Et3fX8-nkNjICcYiACsozbhiwQnIoEp2DRBn7hjOjRSGF0EnJ0G-iSGKpjcaE8hxLianQho-C8825L7Z_XZIb1HO_tJ2_UoHIODAQCfxSlX-KqruyH6w2be2MmnCZIso0Rk9FO6iKOrK66Tsqa1_e4sc7eD8KamuzU7jYEjwz0NtQ6aVzav5wv83ChjW2d85SqV5s3Wq7UsDUOlC1CVT5QNU6ULXyTrxxnGe7iuyfz_hX-gK9_6Am</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Armentano, Diego</creator><creator>Shub, Michael</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140201</creationdate><title>Smale’s Fundamental Theorem of Algebra Reconsidered</title><author>Armentano, Diego ; Shub, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-1edeb93c010d731d6ab175720079ca4d744a6f05d7354627aca56ebb5f7584ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algebra</topic><topic>Applications of Mathematics</topic><topic>Computational mathematics</topic><topic>Computer Science</topic><topic>Economics</topic><topic>Linear and Multilinear Algebras</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical research</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix Theory</topic><topic>Numerical Analysis</topic><topic>Polynomials</topic><topic>Theorems (Mathematics)</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Armentano, Diego</creatorcontrib><creatorcontrib>Shub, Michael</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Foundations of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Armentano, Diego</au><au>Shub, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smale’s Fundamental Theorem of Algebra Reconsidered</atitle><jtitle>Foundations of computational mathematics</jtitle><stitle>Found Comput Math</stitle><date>2014-02-01</date><risdate>2014</risdate><volume>14</volume><issue>1</issue><spage>85</spage><epage>114</epage><pages>85-114</pages><issn>1615-3375</issn><eissn>1615-3383</eissn><coden>FCMOA3</coden><abstract>In his 1981 Fundamental Theorem of Algebra paper Steve Smale initiated the complexity theory of finding a solution of polynomial equations of one complex variable by a variant of Newton’s method. In this paper we reconsider his algorithm in the light of work done in the intervening years. Smale’s upper bound estimate was infinite average cost. Ours is polynomial in the Bézout number and the dimension of the input. Hence it is polynomial for any range of dimensions where the Bézout number is polynomial in the input size. In particular it is not just for the case that Smale considered but for a range of dimensions as considered by Bürgisser–Cucker, where the max of the degrees is greater than or equal to n 1+ ϵ for some fixed ϵ . It is possible that Smale’s algorithm is polynomial cost in all dimensions and our main theorem raises some problems that might lead to a proof of such a theorem.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10208-013-9155-y</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-3375
ispartof Foundations of computational mathematics, 2014-02, Vol.14 (1), p.85-114
issn 1615-3375
1615-3383
language eng
recordid cdi_proquest_journals_1493101461
source SpringerLink (Online service)
subjects Algebra
Applications of Mathematics
Computational mathematics
Computer Science
Economics
Linear and Multilinear Algebras
Math Applications in Computer Science
Mathematical research
Mathematics
Mathematics and Statistics
Matrix Theory
Numerical Analysis
Polynomials
Theorems (Mathematics)
Theory
title Smale’s Fundamental Theorem of Algebra Reconsidered
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A57%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smale%E2%80%99s%20Fundamental%20Theorem%20of%20Algebra%20Reconsidered&rft.jtitle=Foundations%20of%20computational%20mathematics&rft.au=Armentano,%20Diego&rft.date=2014-02-01&rft.volume=14&rft.issue=1&rft.spage=85&rft.epage=114&rft.pages=85-114&rft.issn=1615-3375&rft.eissn=1615-3383&rft.coden=FCMOA3&rft_id=info:doi/10.1007/s10208-013-9155-y&rft_dat=%3Cgale_proqu%3EA378557825%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1493101461&rft_id=info:pmid/&rft_galeid=A378557825&rfr_iscdi=true