Lower Bound on Average-Case Complexity of Inversion of Goldreich’s Function by Drunken Backtracking Algorithms

We prove an exponential lower bound on the average time of inverting Goldreich’s function by drunken backtracking algorithms; this resolves the open question stated in Cook et al. (Proceedings of TCC, pp. 521–538, 2009 ). The Goldreich’s function has n binary inputs and n binary outputs. Every outpu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory of computing systems 2014-02, Vol.54 (2), p.261-276
1. Verfasser: Itsykson, Dmitry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 276
container_issue 2
container_start_page 261
container_title Theory of computing systems
container_volume 54
creator Itsykson, Dmitry
description We prove an exponential lower bound on the average time of inverting Goldreich’s function by drunken backtracking algorithms; this resolves the open question stated in Cook et al. (Proceedings of TCC, pp. 521–538, 2009 ). The Goldreich’s function has n binary inputs and n binary outputs. Every output depends on d inputs and is computed from them by the fixed predicate of arity  d . Our Goldreich’s function is based on an expander graph and on the nonlinear predicates that are linear in Ω ( d ) variables. Drunken algorithm is a backtracking algorithm that somehow chooses a variable for splitting and randomly chooses the value for the variable to be investigated at first. After the submission to the journal we found out that the same result was independently obtained by Rachel Miller.
doi_str_mv 10.1007/s00224-013-9514-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1492445970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3194713701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2b157b75e9ee0600b8065bd13f40683d72bd0c8149d9d90e6d034c80ae774c93</originalsourceid><addsrcrecordid>eNp1UEtOwzAQtRBIlMIB2FlibRjHzm9ZAi2VKrHp3kocJ02b2sFOgO64BtfjJLiEBRs00nz0PiM9hK4p3FKA-M4BBAEnQBlJQ8pJcoImlDNGgKdw-rMHhLMQztGFc1sAYAnABHUr86YsvjeDLrHRePaqbF4rkuVO4czsu1a9N_0Bmwovtcdc40n-WJi2tKqRm6-PT4fng5b9ESkO-MEOeqc0vs_lrre-NbrGs7Y2tuk3e3eJzqq8derqd07Rev64zp7I6nmxzGYrIhmNehIUNIyLOFSpUhABFAlEYVFSVnGIElbGQVGCTChPS1-gohIYlwnkKo65TNkU3Yy2nTUvg3K92JrBav9ReE3AeZjG4Fl0ZElrnLOqEp1t9rk9CArimKsYcxU-V3HMVSReE4wa57m6VvaP87-ib96ve9k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492445970</pqid></control><display><type>article</type><title>Lower Bound on Average-Case Complexity of Inversion of Goldreich’s Function by Drunken Backtracking Algorithms</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Itsykson, Dmitry</creator><creatorcontrib>Itsykson, Dmitry</creatorcontrib><description>We prove an exponential lower bound on the average time of inverting Goldreich’s function by drunken backtracking algorithms; this resolves the open question stated in Cook et al. (Proceedings of TCC, pp. 521–538, 2009 ). The Goldreich’s function has n binary inputs and n binary outputs. Every output depends on d inputs and is computed from them by the fixed predicate of arity  d . Our Goldreich’s function is based on an expander graph and on the nonlinear predicates that are linear in Ω ( d ) variables. Drunken algorithm is a backtracking algorithm that somehow chooses a variable for splitting and randomly chooses the value for the variable to be investigated at first. After the submission to the journal we found out that the same result was independently obtained by Rachel Miller.</description><identifier>ISSN: 1432-4350</identifier><identifier>EISSN: 1433-0490</identifier><identifier>DOI: 10.1007/s00224-013-9514-8</identifier><identifier>CODEN: TCSYFI</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Analysis ; Backtracking ; Computer Science ; Heuristic ; Studies ; Theory of Computation ; Variables</subject><ispartof>Theory of computing systems, 2014-02, Vol.54 (2), p.261-276</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>Springer Science+Business Media New York 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2b157b75e9ee0600b8065bd13f40683d72bd0c8149d9d90e6d034c80ae774c93</citedby><cites>FETCH-LOGICAL-c316t-2b157b75e9ee0600b8065bd13f40683d72bd0c8149d9d90e6d034c80ae774c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00224-013-9514-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00224-013-9514-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Itsykson, Dmitry</creatorcontrib><title>Lower Bound on Average-Case Complexity of Inversion of Goldreich’s Function by Drunken Backtracking Algorithms</title><title>Theory of computing systems</title><addtitle>Theory Comput Syst</addtitle><description>We prove an exponential lower bound on the average time of inverting Goldreich’s function by drunken backtracking algorithms; this resolves the open question stated in Cook et al. (Proceedings of TCC, pp. 521–538, 2009 ). The Goldreich’s function has n binary inputs and n binary outputs. Every output depends on d inputs and is computed from them by the fixed predicate of arity  d . Our Goldreich’s function is based on an expander graph and on the nonlinear predicates that are linear in Ω ( d ) variables. Drunken algorithm is a backtracking algorithm that somehow chooses a variable for splitting and randomly chooses the value for the variable to be investigated at first. After the submission to the journal we found out that the same result was independently obtained by Rachel Miller.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Backtracking</subject><subject>Computer Science</subject><subject>Heuristic</subject><subject>Studies</subject><subject>Theory of Computation</subject><subject>Variables</subject><issn>1432-4350</issn><issn>1433-0490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UEtOwzAQtRBIlMIB2FlibRjHzm9ZAi2VKrHp3kocJ02b2sFOgO64BtfjJLiEBRs00nz0PiM9hK4p3FKA-M4BBAEnQBlJQ8pJcoImlDNGgKdw-rMHhLMQztGFc1sAYAnABHUr86YsvjeDLrHRePaqbF4rkuVO4czsu1a9N_0Bmwovtcdc40n-WJi2tKqRm6-PT4fng5b9ESkO-MEOeqc0vs_lrre-NbrGs7Y2tuk3e3eJzqq8derqd07Rev64zp7I6nmxzGYrIhmNehIUNIyLOFSpUhABFAlEYVFSVnGIElbGQVGCTChPS1-gohIYlwnkKo65TNkU3Yy2nTUvg3K92JrBav9ReE3AeZjG4Fl0ZElrnLOqEp1t9rk9CArimKsYcxU-V3HMVSReE4wa57m6VvaP87-ib96ve9k</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Itsykson, Dmitry</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20140201</creationdate><title>Lower Bound on Average-Case Complexity of Inversion of Goldreich’s Function by Drunken Backtracking Algorithms</title><author>Itsykson, Dmitry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2b157b75e9ee0600b8065bd13f40683d72bd0c8149d9d90e6d034c80ae774c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Backtracking</topic><topic>Computer Science</topic><topic>Heuristic</topic><topic>Studies</topic><topic>Theory of Computation</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Itsykson, Dmitry</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Theory of computing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Itsykson, Dmitry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lower Bound on Average-Case Complexity of Inversion of Goldreich’s Function by Drunken Backtracking Algorithms</atitle><jtitle>Theory of computing systems</jtitle><stitle>Theory Comput Syst</stitle><date>2014-02-01</date><risdate>2014</risdate><volume>54</volume><issue>2</issue><spage>261</spage><epage>276</epage><pages>261-276</pages><issn>1432-4350</issn><eissn>1433-0490</eissn><coden>TCSYFI</coden><abstract>We prove an exponential lower bound on the average time of inverting Goldreich’s function by drunken backtracking algorithms; this resolves the open question stated in Cook et al. (Proceedings of TCC, pp. 521–538, 2009 ). The Goldreich’s function has n binary inputs and n binary outputs. Every output depends on d inputs and is computed from them by the fixed predicate of arity  d . Our Goldreich’s function is based on an expander graph and on the nonlinear predicates that are linear in Ω ( d ) variables. Drunken algorithm is a backtracking algorithm that somehow chooses a variable for splitting and randomly chooses the value for the variable to be investigated at first. After the submission to the journal we found out that the same result was independently obtained by Rachel Miller.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s00224-013-9514-8</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-4350
ispartof Theory of computing systems, 2014-02, Vol.54 (2), p.261-276
issn 1432-4350
1433-0490
language eng
recordid cdi_proquest_journals_1492445970
source SpringerNature Journals; EBSCOhost Business Source Complete
subjects Algorithms
Analysis
Backtracking
Computer Science
Heuristic
Studies
Theory of Computation
Variables
title Lower Bound on Average-Case Complexity of Inversion of Goldreich’s Function by Drunken Backtracking Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A54%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lower%20Bound%20on%20Average-Case%20Complexity%20of%20Inversion%20of%20Goldreich%E2%80%99s%20Function%20by%20Drunken%20Backtracking%20Algorithms&rft.jtitle=Theory%20of%20computing%20systems&rft.au=Itsykson,%20Dmitry&rft.date=2014-02-01&rft.volume=54&rft.issue=2&rft.spage=261&rft.epage=276&rft.pages=261-276&rft.issn=1432-4350&rft.eissn=1433-0490&rft.coden=TCSYFI&rft_id=info:doi/10.1007/s00224-013-9514-8&rft_dat=%3Cproquest_cross%3E3194713701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1492445970&rft_id=info:pmid/&rfr_iscdi=true