Constraint routing and regenerator site concentration in ROADM networks

Advances in the development of colorless and nondirectional reconfigurable optical add-drop multiplexers (ROADMs) enable flexible predeployment of optoelectronic regenerators (reshaping, retiming, and reamplifying known as 3R) in future optical networks. Compared to the current practice of installin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optical communications and networking 2013-11, Vol.5 (11), p.1202-1214
Hauptverfasser: Bathula, Balagangadhar G., Sinha, Rakesh K., Chiu, Angela L., Feuer, Mark D., Guangzhi Li, Woodward, Sheryl L., Weiyi Zhang, Doverspike, Robert, Magill, Peter, Bergman, Keren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1214
container_issue 11
container_start_page 1202
container_title Journal of optical communications and networking
container_volume 5
creator Bathula, Balagangadhar G.
Sinha, Rakesh K.
Chiu, Angela L.
Feuer, Mark D.
Guangzhi Li
Woodward, Sheryl L.
Weiyi Zhang
Doverspike, Robert
Magill, Peter
Bergman, Keren
description Advances in the development of colorless and nondirectional reconfigurable optical add-drop multiplexers (ROADMs) enable flexible predeployment of optoelectronic regenerators (reshaping, retiming, and reamplifying known as 3R) in future optical networks. Compared to the current practice of installing a regenerator only when a circuit needs them, predeployment of regenerators in specific sites will allow service providers to achieve rapid provisioning such as bandwidth-on-demand service and fast restoration. Concentrating the predeployment of regenerators in a subset of ROADM sites will achieve high utilization and reduces the network operational costs. We prove the resulting optimization problem is NP-hard and provide the proof. We present an efficient heuristic for this problem that takes into account both the cost of individual circuits (regenerator cost and transmission line system cost) and the number of regenerator sites. We validate our heuristic approach with integer linear programming (ILP) formulations for a small network. Using specific network examples, we show that our heuristic has near-optimal performance under most studied scenarios and cost models. We further enhance the heuristic to incorporate the probability of demand for each circuit. This enables a reduction in the number of regenerator sites by allowing circuits to use costlier paths if they have lower probability of being needed. We also evaluate the heuristic to determine the extra regenerator sites required to support diverse routing. In this paper, we provide detailed analysis, pseudocodes, and proofs for the models presented in our previous work [Nat. Fiber Optic Engineers Conf., 2012, NW3F.6; 9th Int. Conf. on Design of Reliable Communication Networks (DRCN), 2013, 139] and compare the heuristic results with ILP for a small-scale network topology.
doi_str_mv 10.1364/JOCN.5.001202
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1477928795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6678146</ieee_id><sourcerecordid>3183812491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-289d73b8c01368e8c4c96b1e9a323b6a1380989c4add833401da2960a81742e93</originalsourceid><addsrcrecordid>eNpd0MFLwzAUBvAgCs7p0ZOXgBcvnUmTpslxVJ3KdCB6Lln6NjK3ZCYp4n9vS2UH3-W9w4-Px4fQJSUTygS_fV5Ur5NiQgjNSX6ERlRxlhHB1PHhzskpOotxQ4goKS1GaFZ5F1PQ1iUcfJusW2PtGhxgDQ6CTj7gaBNg450B18lkvcPW4bfF9O4FO0jfPnzGc3Sy0tsIF397jD4e7t-rx2y-mD1V03lmGJUpy6VqSraUhnQfS5CGGyWWFJRmOVsKTZkkSirDddNIxjihjc6VIFrSkueg2BjdDLn74L9aiKne2Whgu9UOfBtrysuiny5_jK7_0Y1vg-u-61WpclmqolPZoEzwMQZY1ftgdzr81JTUfa11X2td1EOtnb8avAWAgxWilJQL9gtEAHGT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1477928795</pqid></control><display><type>article</type><title>Constraint routing and regenerator site concentration in ROADM networks</title><source>IEEE Electronic Library (IEL)</source><creator>Bathula, Balagangadhar G. ; Sinha, Rakesh K. ; Chiu, Angela L. ; Feuer, Mark D. ; Guangzhi Li ; Woodward, Sheryl L. ; Weiyi Zhang ; Doverspike, Robert ; Magill, Peter ; Bergman, Keren</creator><creatorcontrib>Bathula, Balagangadhar G. ; Sinha, Rakesh K. ; Chiu, Angela L. ; Feuer, Mark D. ; Guangzhi Li ; Woodward, Sheryl L. ; Weiyi Zhang ; Doverspike, Robert ; Magill, Peter ; Bergman, Keren</creatorcontrib><description>Advances in the development of colorless and nondirectional reconfigurable optical add-drop multiplexers (ROADMs) enable flexible predeployment of optoelectronic regenerators (reshaping, retiming, and reamplifying known as 3R) in future optical networks. Compared to the current practice of installing a regenerator only when a circuit needs them, predeployment of regenerators in specific sites will allow service providers to achieve rapid provisioning such as bandwidth-on-demand service and fast restoration. Concentrating the predeployment of regenerators in a subset of ROADM sites will achieve high utilization and reduces the network operational costs. We prove the resulting optimization problem is NP-hard and provide the proof. We present an efficient heuristic for this problem that takes into account both the cost of individual circuits (regenerator cost and transmission line system cost) and the number of regenerator sites. We validate our heuristic approach with integer linear programming (ILP) formulations for a small network. Using specific network examples, we show that our heuristic has near-optimal performance under most studied scenarios and cost models. We further enhance the heuristic to incorporate the probability of demand for each circuit. This enables a reduction in the number of regenerator sites by allowing circuits to use costlier paths if they have lower probability of being needed. We also evaluate the heuristic to determine the extra regenerator sites required to support diverse routing. In this paper, we provide detailed analysis, pseudocodes, and proofs for the models presented in our previous work [Nat. Fiber Optic Engineers Conf., 2012, NW3F.6; 9th Int. Conf. on Design of Reliable Communication Networks (DRCN), 2013, 139] and compare the heuristic results with ILP for a small-scale network topology.</description><identifier>ISSN: 1943-0620</identifier><identifier>EISSN: 1943-0639</identifier><identifier>DOI: 10.1364/JOCN.5.001202</identifier><identifier>CODEN: JOCNBB</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; All-optical networks ; Circuits ; Heuristic ; Heuristic algorithms ; Network optimization ; Optical add-drop multiplexers ; Optical fiber networks ; Optical fibers ; Reconfigurable optical-add-drop multiplexer (ROADM) ; Regenerator placement ; Repeaters</subject><ispartof>Journal of optical communications and networking, 2013-11, Vol.5 (11), p.1202-1214</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-289d73b8c01368e8c4c96b1e9a323b6a1380989c4add833401da2960a81742e93</citedby><cites>FETCH-LOGICAL-c318t-289d73b8c01368e8c4c96b1e9a323b6a1380989c4add833401da2960a81742e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6678146$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6678146$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bathula, Balagangadhar G.</creatorcontrib><creatorcontrib>Sinha, Rakesh K.</creatorcontrib><creatorcontrib>Chiu, Angela L.</creatorcontrib><creatorcontrib>Feuer, Mark D.</creatorcontrib><creatorcontrib>Guangzhi Li</creatorcontrib><creatorcontrib>Woodward, Sheryl L.</creatorcontrib><creatorcontrib>Weiyi Zhang</creatorcontrib><creatorcontrib>Doverspike, Robert</creatorcontrib><creatorcontrib>Magill, Peter</creatorcontrib><creatorcontrib>Bergman, Keren</creatorcontrib><title>Constraint routing and regenerator site concentration in ROADM networks</title><title>Journal of optical communications and networking</title><addtitle>jocn</addtitle><description>Advances in the development of colorless and nondirectional reconfigurable optical add-drop multiplexers (ROADMs) enable flexible predeployment of optoelectronic regenerators (reshaping, retiming, and reamplifying known as 3R) in future optical networks. Compared to the current practice of installing a regenerator only when a circuit needs them, predeployment of regenerators in specific sites will allow service providers to achieve rapid provisioning such as bandwidth-on-demand service and fast restoration. Concentrating the predeployment of regenerators in a subset of ROADM sites will achieve high utilization and reduces the network operational costs. We prove the resulting optimization problem is NP-hard and provide the proof. We present an efficient heuristic for this problem that takes into account both the cost of individual circuits (regenerator cost and transmission line system cost) and the number of regenerator sites. We validate our heuristic approach with integer linear programming (ILP) formulations for a small network. Using specific network examples, we show that our heuristic has near-optimal performance under most studied scenarios and cost models. We further enhance the heuristic to incorporate the probability of demand for each circuit. This enables a reduction in the number of regenerator sites by allowing circuits to use costlier paths if they have lower probability of being needed. We also evaluate the heuristic to determine the extra regenerator sites required to support diverse routing. In this paper, we provide detailed analysis, pseudocodes, and proofs for the models presented in our previous work [Nat. Fiber Optic Engineers Conf., 2012, NW3F.6; 9th Int. Conf. on Design of Reliable Communication Networks (DRCN), 2013, 139] and compare the heuristic results with ILP for a small-scale network topology.</description><subject>Algorithms</subject><subject>All-optical networks</subject><subject>Circuits</subject><subject>Heuristic</subject><subject>Heuristic algorithms</subject><subject>Network optimization</subject><subject>Optical add-drop multiplexers</subject><subject>Optical fiber networks</subject><subject>Optical fibers</subject><subject>Reconfigurable optical-add-drop multiplexer (ROADM)</subject><subject>Regenerator placement</subject><subject>Repeaters</subject><issn>1943-0620</issn><issn>1943-0639</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0MFLwzAUBvAgCs7p0ZOXgBcvnUmTpslxVJ3KdCB6Lln6NjK3ZCYp4n9vS2UH3-W9w4-Px4fQJSUTygS_fV5Ur5NiQgjNSX6ERlRxlhHB1PHhzskpOotxQ4goKS1GaFZ5F1PQ1iUcfJusW2PtGhxgDQ6CTj7gaBNg450B18lkvcPW4bfF9O4FO0jfPnzGc3Sy0tsIF397jD4e7t-rx2y-mD1V03lmGJUpy6VqSraUhnQfS5CGGyWWFJRmOVsKTZkkSirDddNIxjihjc6VIFrSkueg2BjdDLn74L9aiKne2Whgu9UOfBtrysuiny5_jK7_0Y1vg-u-61WpclmqolPZoEzwMQZY1ftgdzr81JTUfa11X2td1EOtnb8avAWAgxWilJQL9gtEAHGT</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Bathula, Balagangadhar G.</creator><creator>Sinha, Rakesh K.</creator><creator>Chiu, Angela L.</creator><creator>Feuer, Mark D.</creator><creator>Guangzhi Li</creator><creator>Woodward, Sheryl L.</creator><creator>Weiyi Zhang</creator><creator>Doverspike, Robert</creator><creator>Magill, Peter</creator><creator>Bergman, Keren</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201311</creationdate><title>Constraint routing and regenerator site concentration in ROADM networks</title><author>Bathula, Balagangadhar G. ; Sinha, Rakesh K. ; Chiu, Angela L. ; Feuer, Mark D. ; Guangzhi Li ; Woodward, Sheryl L. ; Weiyi Zhang ; Doverspike, Robert ; Magill, Peter ; Bergman, Keren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-289d73b8c01368e8c4c96b1e9a323b6a1380989c4add833401da2960a81742e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>All-optical networks</topic><topic>Circuits</topic><topic>Heuristic</topic><topic>Heuristic algorithms</topic><topic>Network optimization</topic><topic>Optical add-drop multiplexers</topic><topic>Optical fiber networks</topic><topic>Optical fibers</topic><topic>Reconfigurable optical-add-drop multiplexer (ROADM)</topic><topic>Regenerator placement</topic><topic>Repeaters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bathula, Balagangadhar G.</creatorcontrib><creatorcontrib>Sinha, Rakesh K.</creatorcontrib><creatorcontrib>Chiu, Angela L.</creatorcontrib><creatorcontrib>Feuer, Mark D.</creatorcontrib><creatorcontrib>Guangzhi Li</creatorcontrib><creatorcontrib>Woodward, Sheryl L.</creatorcontrib><creatorcontrib>Weiyi Zhang</creatorcontrib><creatorcontrib>Doverspike, Robert</creatorcontrib><creatorcontrib>Magill, Peter</creatorcontrib><creatorcontrib>Bergman, Keren</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of optical communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bathula, Balagangadhar G.</au><au>Sinha, Rakesh K.</au><au>Chiu, Angela L.</au><au>Feuer, Mark D.</au><au>Guangzhi Li</au><au>Woodward, Sheryl L.</au><au>Weiyi Zhang</au><au>Doverspike, Robert</au><au>Magill, Peter</au><au>Bergman, Keren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraint routing and regenerator site concentration in ROADM networks</atitle><jtitle>Journal of optical communications and networking</jtitle><stitle>jocn</stitle><date>2013-11</date><risdate>2013</risdate><volume>5</volume><issue>11</issue><spage>1202</spage><epage>1214</epage><pages>1202-1214</pages><issn>1943-0620</issn><eissn>1943-0639</eissn><coden>JOCNBB</coden><abstract>Advances in the development of colorless and nondirectional reconfigurable optical add-drop multiplexers (ROADMs) enable flexible predeployment of optoelectronic regenerators (reshaping, retiming, and reamplifying known as 3R) in future optical networks. Compared to the current practice of installing a regenerator only when a circuit needs them, predeployment of regenerators in specific sites will allow service providers to achieve rapid provisioning such as bandwidth-on-demand service and fast restoration. Concentrating the predeployment of regenerators in a subset of ROADM sites will achieve high utilization and reduces the network operational costs. We prove the resulting optimization problem is NP-hard and provide the proof. We present an efficient heuristic for this problem that takes into account both the cost of individual circuits (regenerator cost and transmission line system cost) and the number of regenerator sites. We validate our heuristic approach with integer linear programming (ILP) formulations for a small network. Using specific network examples, we show that our heuristic has near-optimal performance under most studied scenarios and cost models. We further enhance the heuristic to incorporate the probability of demand for each circuit. This enables a reduction in the number of regenerator sites by allowing circuits to use costlier paths if they have lower probability of being needed. We also evaluate the heuristic to determine the extra regenerator sites required to support diverse routing. In this paper, we provide detailed analysis, pseudocodes, and proofs for the models presented in our previous work [Nat. Fiber Optic Engineers Conf., 2012, NW3F.6; 9th Int. Conf. on Design of Reliable Communication Networks (DRCN), 2013, 139] and compare the heuristic results with ILP for a small-scale network topology.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1364/JOCN.5.001202</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1943-0620
ispartof Journal of optical communications and networking, 2013-11, Vol.5 (11), p.1202-1214
issn 1943-0620
1943-0639
language eng
recordid cdi_proquest_journals_1477928795
source IEEE Electronic Library (IEL)
subjects Algorithms
All-optical networks
Circuits
Heuristic
Heuristic algorithms
Network optimization
Optical add-drop multiplexers
Optical fiber networks
Optical fibers
Reconfigurable optical-add-drop multiplexer (ROADM)
Regenerator placement
Repeaters
title Constraint routing and regenerator site concentration in ROADM networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraint%20routing%20and%20regenerator%20site%20concentration%20in%20ROADM%20networks&rft.jtitle=Journal%20of%20optical%20communications%20and%20networking&rft.au=Bathula,%20Balagangadhar%20G.&rft.date=2013-11&rft.volume=5&rft.issue=11&rft.spage=1202&rft.epage=1214&rft.pages=1202-1214&rft.issn=1943-0620&rft.eissn=1943-0639&rft.coden=JOCNBB&rft_id=info:doi/10.1364/JOCN.5.001202&rft_dat=%3Cproquest_RIE%3E3183812491%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1477928795&rft_id=info:pmid/&rft_ieee_id=6678146&rfr_iscdi=true