A Priori Error Analysis for Finite Element Approximation of Parabolic Optimal Control Problems with Pointwise Control

We consider finite element approximations of parabolic control problems with pointwise control. The state equation exhibits low regularity due to the control imposed pointwisely; this introduces some difficulties for both theoretical and numerical analysis. To discretize the optimal control problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on control and optimization 2014-01, Vol.52 (1), p.97-119
Hauptverfasser: Gong, Wei, Hinze, Michael, Zhou, Zhaojie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119
container_issue 1
container_start_page 97
container_title SIAM journal on control and optimization
container_volume 52
creator Gong, Wei
Hinze, Michael
Zhou, Zhaojie
description We consider finite element approximations of parabolic control problems with pointwise control. The state equation exhibits low regularity due to the control imposed pointwisely; this introduces some difficulties for both theoretical and numerical analysis. To discretize the optimal control problem we use variational discretization together with piecewise linear and continuous finite elements for the space discretization of the state, and we use the backward Euler scheme for time discretization. We prove a priori error estimates for the control, state, and adjoint state. Numerical experiments are provided which support the theoretical results. [PUBLICATION ABSTRACT]
doi_str_mv 10.1137/110840133
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1477232688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3180741951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c187t-4c88a06c76ab9d08c078153be036232afc1e92081590519a30853070b9ca9fad3</originalsourceid><addsrcrecordid>eNo9UEFOwzAQtBBIlMKBH1jixCGwGyexfYyqtiBVag9wjhzXEa7SONiuSn-PUYHTamdnRzNDyD3CEyLjz4ggCkDGLsgEQZYZRyYuyQRYxTLAXF6TmxB2AFgUWEzIoaYbb523dO6987QeVH8KNtAuLQs72GjovDd7M0Raj6N3X3avonUDdR3dKK9a11tN12NMeE9nboje9UnTtekr0KONH3Tj7BCPNpi_-y256lQfzN3vnJL3xfxt9pKt1svXWb3KNAoes0ILoaDSvFKt3ILQwAWWrDUpTc5y1Wk0MoeESShRKgaiZMChlVrJTm3ZlDycdZPxz4MJsdm5g08RQ4MF50mjEiKxHs8s7V0I3nTN6FMaf2oQmp9Wm_9W2Tf0gGk6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1477232688</pqid></control><display><type>article</type><title>A Priori Error Analysis for Finite Element Approximation of Parabolic Optimal Control Problems with Pointwise Control</title><source>SIAM Journals Online</source><creator>Gong, Wei ; Hinze, Michael ; Zhou, Zhaojie</creator><creatorcontrib>Gong, Wei ; Hinze, Michael ; Zhou, Zhaojie</creatorcontrib><description>We consider finite element approximations of parabolic control problems with pointwise control. The state equation exhibits low regularity due to the control imposed pointwisely; this introduces some difficulties for both theoretical and numerical analysis. To discretize the optimal control problem we use variational discretization together with piecewise linear and continuous finite elements for the space discretization of the state, and we use the backward Euler scheme for time discretization. We prove a priori error estimates for the control, state, and adjoint state. Numerical experiments are provided which support the theoretical results. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/110840133</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Approximation ; Computational mathematics ; Energy consumption ; Error analysis ; Estimates ; Experiments ; Mathematical functions</subject><ispartof>SIAM journal on control and optimization, 2014-01, Vol.52 (1), p.97-119</ispartof><rights>2014, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c187t-4c88a06c76ab9d08c078153be036232afc1e92081590519a30853070b9ca9fad3</citedby><cites>FETCH-LOGICAL-c187t-4c88a06c76ab9d08c078153be036232afc1e92081590519a30853070b9ca9fad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,27924,27925</link.rule.ids></links><search><creatorcontrib>Gong, Wei</creatorcontrib><creatorcontrib>Hinze, Michael</creatorcontrib><creatorcontrib>Zhou, Zhaojie</creatorcontrib><title>A Priori Error Analysis for Finite Element Approximation of Parabolic Optimal Control Problems with Pointwise Control</title><title>SIAM journal on control and optimization</title><description>We consider finite element approximations of parabolic control problems with pointwise control. The state equation exhibits low regularity due to the control imposed pointwisely; this introduces some difficulties for both theoretical and numerical analysis. To discretize the optimal control problem we use variational discretization together with piecewise linear and continuous finite elements for the space discretization of the state, and we use the backward Euler scheme for time discretization. We prove a priori error estimates for the control, state, and adjoint state. Numerical experiments are provided which support the theoretical results. [PUBLICATION ABSTRACT]</description><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Computational mathematics</subject><subject>Energy consumption</subject><subject>Error analysis</subject><subject>Estimates</subject><subject>Experiments</subject><subject>Mathematical functions</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9UEFOwzAQtBBIlMKBH1jixCGwGyexfYyqtiBVag9wjhzXEa7SONiuSn-PUYHTamdnRzNDyD3CEyLjz4ggCkDGLsgEQZYZRyYuyQRYxTLAXF6TmxB2AFgUWEzIoaYbb523dO6987QeVH8KNtAuLQs72GjovDd7M0Raj6N3X3avonUDdR3dKK9a11tN12NMeE9nboje9UnTtekr0KONH3Tj7BCPNpi_-y256lQfzN3vnJL3xfxt9pKt1svXWb3KNAoes0ILoaDSvFKt3ILQwAWWrDUpTc5y1Wk0MoeESShRKgaiZMChlVrJTm3ZlDycdZPxz4MJsdm5g08RQ4MF50mjEiKxHs8s7V0I3nTN6FMaf2oQmp9Wm_9W2Tf0gGk6</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Gong, Wei</creator><creator>Hinze, Michael</creator><creator>Zhou, Zhaojie</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>201401</creationdate><title>A Priori Error Analysis for Finite Element Approximation of Parabolic Optimal Control Problems with Pointwise Control</title><author>Gong, Wei ; Hinze, Michael ; Zhou, Zhaojie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c187t-4c88a06c76ab9d08c078153be036232afc1e92081590519a30853070b9ca9fad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Computational mathematics</topic><topic>Energy consumption</topic><topic>Error analysis</topic><topic>Estimates</topic><topic>Experiments</topic><topic>Mathematical functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Wei</creatorcontrib><creatorcontrib>Hinze, Michael</creatorcontrib><creatorcontrib>Zhou, Zhaojie</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Wei</au><au>Hinze, Michael</au><au>Zhou, Zhaojie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Priori Error Analysis for Finite Element Approximation of Parabolic Optimal Control Problems with Pointwise Control</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>2014-01</date><risdate>2014</risdate><volume>52</volume><issue>1</issue><spage>97</spage><epage>119</epage><pages>97-119</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><abstract>We consider finite element approximations of parabolic control problems with pointwise control. The state equation exhibits low regularity due to the control imposed pointwisely; this introduces some difficulties for both theoretical and numerical analysis. To discretize the optimal control problem we use variational discretization together with piecewise linear and continuous finite elements for the space discretization of the state, and we use the backward Euler scheme for time discretization. We prove a priori error estimates for the control, state, and adjoint state. Numerical experiments are provided which support the theoretical results. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/110840133</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0363-0129
ispartof SIAM journal on control and optimization, 2014-01, Vol.52 (1), p.97-119
issn 0363-0129
1095-7138
language eng
recordid cdi_proquest_journals_1477232688
source SIAM Journals Online
subjects Applied mathematics
Approximation
Computational mathematics
Energy consumption
Error analysis
Estimates
Experiments
Mathematical functions
title A Priori Error Analysis for Finite Element Approximation of Parabolic Optimal Control Problems with Pointwise Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Priori%20Error%20Analysis%20for%20Finite%20Element%20Approximation%20of%20Parabolic%20Optimal%20Control%20Problems%20with%20Pointwise%20Control&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=Gong,%20Wei&rft.date=2014-01&rft.volume=52&rft.issue=1&rft.spage=97&rft.epage=119&rft.pages=97-119&rft.issn=0363-0129&rft.eissn=1095-7138&rft_id=info:doi/10.1137/110840133&rft_dat=%3Cproquest_cross%3E3180741951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1477232688&rft_id=info:pmid/&rfr_iscdi=true