A Priori Error Analysis for Finite Element Approximation of Parabolic Optimal Control Problems with Pointwise Control
We consider finite element approximations of parabolic control problems with pointwise control. The state equation exhibits low regularity due to the control imposed pointwisely; this introduces some difficulties for both theoretical and numerical analysis. To discretize the optimal control problem...
Gespeichert in:
Veröffentlicht in: | SIAM journal on control and optimization 2014-01, Vol.52 (1), p.97-119 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 119 |
---|---|
container_issue | 1 |
container_start_page | 97 |
container_title | SIAM journal on control and optimization |
container_volume | 52 |
creator | Gong, Wei Hinze, Michael Zhou, Zhaojie |
description | We consider finite element approximations of parabolic control problems with pointwise control. The state equation exhibits low regularity due to the control imposed pointwisely; this introduces some difficulties for both theoretical and numerical analysis. To discretize the optimal control problem we use variational discretization together with piecewise linear and continuous finite elements for the space discretization of the state, and we use the backward Euler scheme for time discretization. We prove a priori error estimates for the control, state, and adjoint state. Numerical experiments are provided which support the theoretical results. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1137/110840133 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1477232688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3180741951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c187t-4c88a06c76ab9d08c078153be036232afc1e92081590519a30853070b9ca9fad3</originalsourceid><addsrcrecordid>eNo9UEFOwzAQtBBIlMKBH1jixCGwGyexfYyqtiBVag9wjhzXEa7SONiuSn-PUYHTamdnRzNDyD3CEyLjz4ggCkDGLsgEQZYZRyYuyQRYxTLAXF6TmxB2AFgUWEzIoaYbb523dO6987QeVH8KNtAuLQs72GjovDd7M0Raj6N3X3avonUDdR3dKK9a11tN12NMeE9nboje9UnTtekr0KONH3Tj7BCPNpi_-y256lQfzN3vnJL3xfxt9pKt1svXWb3KNAoes0ILoaDSvFKt3ILQwAWWrDUpTc5y1Wk0MoeESShRKgaiZMChlVrJTm3ZlDycdZPxz4MJsdm5g08RQ4MF50mjEiKxHs8s7V0I3nTN6FMaf2oQmp9Wm_9W2Tf0gGk6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1477232688</pqid></control><display><type>article</type><title>A Priori Error Analysis for Finite Element Approximation of Parabolic Optimal Control Problems with Pointwise Control</title><source>SIAM Journals Online</source><creator>Gong, Wei ; Hinze, Michael ; Zhou, Zhaojie</creator><creatorcontrib>Gong, Wei ; Hinze, Michael ; Zhou, Zhaojie</creatorcontrib><description>We consider finite element approximations of parabolic control problems with pointwise control. The state equation exhibits low regularity due to the control imposed pointwisely; this introduces some difficulties for both theoretical and numerical analysis. To discretize the optimal control problem we use variational discretization together with piecewise linear and continuous finite elements for the space discretization of the state, and we use the backward Euler scheme for time discretization. We prove a priori error estimates for the control, state, and adjoint state. Numerical experiments are provided which support the theoretical results. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/110840133</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Approximation ; Computational mathematics ; Energy consumption ; Error analysis ; Estimates ; Experiments ; Mathematical functions</subject><ispartof>SIAM journal on control and optimization, 2014-01, Vol.52 (1), p.97-119</ispartof><rights>2014, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c187t-4c88a06c76ab9d08c078153be036232afc1e92081590519a30853070b9ca9fad3</citedby><cites>FETCH-LOGICAL-c187t-4c88a06c76ab9d08c078153be036232afc1e92081590519a30853070b9ca9fad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,27924,27925</link.rule.ids></links><search><creatorcontrib>Gong, Wei</creatorcontrib><creatorcontrib>Hinze, Michael</creatorcontrib><creatorcontrib>Zhou, Zhaojie</creatorcontrib><title>A Priori Error Analysis for Finite Element Approximation of Parabolic Optimal Control Problems with Pointwise Control</title><title>SIAM journal on control and optimization</title><description>We consider finite element approximations of parabolic control problems with pointwise control. The state equation exhibits low regularity due to the control imposed pointwisely; this introduces some difficulties for both theoretical and numerical analysis. To discretize the optimal control problem we use variational discretization together with piecewise linear and continuous finite elements for the space discretization of the state, and we use the backward Euler scheme for time discretization. We prove a priori error estimates for the control, state, and adjoint state. Numerical experiments are provided which support the theoretical results. [PUBLICATION ABSTRACT]</description><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Computational mathematics</subject><subject>Energy consumption</subject><subject>Error analysis</subject><subject>Estimates</subject><subject>Experiments</subject><subject>Mathematical functions</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9UEFOwzAQtBBIlMKBH1jixCGwGyexfYyqtiBVag9wjhzXEa7SONiuSn-PUYHTamdnRzNDyD3CEyLjz4ggCkDGLsgEQZYZRyYuyQRYxTLAXF6TmxB2AFgUWEzIoaYbb523dO6987QeVH8KNtAuLQs72GjovDd7M0Raj6N3X3avonUDdR3dKK9a11tN12NMeE9nboje9UnTtekr0KONH3Tj7BCPNpi_-y256lQfzN3vnJL3xfxt9pKt1svXWb3KNAoes0ILoaDSvFKt3ILQwAWWrDUpTc5y1Wk0MoeESShRKgaiZMChlVrJTm3ZlDycdZPxz4MJsdm5g08RQ4MF50mjEiKxHs8s7V0I3nTN6FMaf2oQmp9Wm_9W2Tf0gGk6</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Gong, Wei</creator><creator>Hinze, Michael</creator><creator>Zhou, Zhaojie</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>201401</creationdate><title>A Priori Error Analysis for Finite Element Approximation of Parabolic Optimal Control Problems with Pointwise Control</title><author>Gong, Wei ; Hinze, Michael ; Zhou, Zhaojie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c187t-4c88a06c76ab9d08c078153be036232afc1e92081590519a30853070b9ca9fad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Computational mathematics</topic><topic>Energy consumption</topic><topic>Error analysis</topic><topic>Estimates</topic><topic>Experiments</topic><topic>Mathematical functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Wei</creatorcontrib><creatorcontrib>Hinze, Michael</creatorcontrib><creatorcontrib>Zhou, Zhaojie</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Wei</au><au>Hinze, Michael</au><au>Zhou, Zhaojie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Priori Error Analysis for Finite Element Approximation of Parabolic Optimal Control Problems with Pointwise Control</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>2014-01</date><risdate>2014</risdate><volume>52</volume><issue>1</issue><spage>97</spage><epage>119</epage><pages>97-119</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><abstract>We consider finite element approximations of parabolic control problems with pointwise control. The state equation exhibits low regularity due to the control imposed pointwisely; this introduces some difficulties for both theoretical and numerical analysis. To discretize the optimal control problem we use variational discretization together with piecewise linear and continuous finite elements for the space discretization of the state, and we use the backward Euler scheme for time discretization. We prove a priori error estimates for the control, state, and adjoint state. Numerical experiments are provided which support the theoretical results. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/110840133</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-0129 |
ispartof | SIAM journal on control and optimization, 2014-01, Vol.52 (1), p.97-119 |
issn | 0363-0129 1095-7138 |
language | eng |
recordid | cdi_proquest_journals_1477232688 |
source | SIAM Journals Online |
subjects | Applied mathematics Approximation Computational mathematics Energy consumption Error analysis Estimates Experiments Mathematical functions |
title | A Priori Error Analysis for Finite Element Approximation of Parabolic Optimal Control Problems with Pointwise Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Priori%20Error%20Analysis%20for%20Finite%20Element%20Approximation%20of%20Parabolic%20Optimal%20Control%20Problems%20with%20Pointwise%20Control&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=Gong,%20Wei&rft.date=2014-01&rft.volume=52&rft.issue=1&rft.spage=97&rft.epage=119&rft.pages=97-119&rft.issn=0363-0129&rft.eissn=1095-7138&rft_id=info:doi/10.1137/110840133&rft_dat=%3Cproquest_cross%3E3180741951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1477232688&rft_id=info:pmid/&rfr_iscdi=true |