Treatment effect estimation with covariate measurement error
This paper investigates the effect that covariate measurement error has on a treatment effect analysis built on an unconfoundedness restriction in which there is conditioning on error free covariates. The approach uses small parameter asymptotic methods to obtain the approximate effects of measureme...
Gespeichert in:
Veröffentlicht in: | Journal of econometrics 2014-02, Vol.178 (2), p.707-715 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 715 |
---|---|
container_issue | 2 |
container_start_page | 707 |
container_title | Journal of econometrics |
container_volume | 178 |
creator | Battistin, Erich Chesher, Andrew |
description | This paper investigates the effect that covariate measurement error has on a treatment effect analysis built on an unconfoundedness restriction in which there is conditioning on error free covariates. The approach uses small parameter asymptotic methods to obtain the approximate effects of measurement error for estimators of average treatment effects. The approximations can be estimated using data on observed outcomes, the treatment indicator and error contaminated covariates without employing additional information from validation data or instrumental variables. The results can be used in a sensitivity analysis to probe the potential effects of measurement error on the evaluation of treatment effects. |
doi_str_mv | 10.1016/j.jeconom.2013.10.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1476210923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030440761300225X</els_id><sourcerecordid>3177099681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-953dda5b81c4c9a74ffb622cbef6d775d2c94796a0f9be10efd884a88a266b2e3</originalsourceid><addsrcrecordid>eNqFkEFLxDAQhYMouK7-BKHguXWSpmkKgsjiqrDgZT2HNJ1gim3WpLvivzdL9-5p4PHem5mPkFsKBQUq7vuiR-NHPxQMaJm0AiickQWVNcuFbKpzsoASeM6hFpfkKsYeACouywV52AbU04DjlKG1aNKIkxv05PyY_bjpMzP-oIPTE2YD6rgPOJtD8OGaXFj9FfHmNJfkY_28Xb3mm_eXt9XTJjecyylvqrLrdNVKarhpdM2tbQVjpkUrurquOmYaXjdCg21apIC2k5JrKTUTomVYLsnd3LsL_nufDlS934cxrVSU14JRaFiZXNXsMsHHGNCqXUifhF9FQR1BqV6dQKkjqKOcQKXc45zD9MLBYVDROBwNdi4kIKrz7p-GP20XdP8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1476210923</pqid></control><display><type>article</type><title>Treatment effect estimation with covariate measurement error</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Battistin, Erich ; Chesher, Andrew</creator><creatorcontrib>Battistin, Erich ; Chesher, Andrew</creatorcontrib><description>This paper investigates the effect that covariate measurement error has on a treatment effect analysis built on an unconfoundedness restriction in which there is conditioning on error free covariates. The approach uses small parameter asymptotic methods to obtain the approximate effects of measurement error for estimators of average treatment effects. The approximations can be estimated using data on observed outcomes, the treatment indicator and error contaminated covariates without employing additional information from validation data or instrumental variables. The results can be used in a sensitivity analysis to probe the potential effects of measurement error on the evaluation of treatment effects.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2013.10.010</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Approximation ; Asymptotic methods ; Econometrics ; Measurement error ; Measurement errors ; Parameter asymptotics ; Potential outcomes ; Sensitivity analysis ; Studies ; Treatment effects</subject><ispartof>Journal of econometrics, 2014-02, Vol.178 (2), p.707-715</ispartof><rights>2013 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Feb 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-953dda5b81c4c9a74ffb622cbef6d775d2c94796a0f9be10efd884a88a266b2e3</citedby><cites>FETCH-LOGICAL-c448t-953dda5b81c4c9a74ffb622cbef6d775d2c94796a0f9be10efd884a88a266b2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2013.10.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Battistin, Erich</creatorcontrib><creatorcontrib>Chesher, Andrew</creatorcontrib><title>Treatment effect estimation with covariate measurement error</title><title>Journal of econometrics</title><description>This paper investigates the effect that covariate measurement error has on a treatment effect analysis built on an unconfoundedness restriction in which there is conditioning on error free covariates. The approach uses small parameter asymptotic methods to obtain the approximate effects of measurement error for estimators of average treatment effects. The approximations can be estimated using data on observed outcomes, the treatment indicator and error contaminated covariates without employing additional information from validation data or instrumental variables. The results can be used in a sensitivity analysis to probe the potential effects of measurement error on the evaluation of treatment effects.</description><subject>Approximation</subject><subject>Asymptotic methods</subject><subject>Econometrics</subject><subject>Measurement error</subject><subject>Measurement errors</subject><subject>Parameter asymptotics</subject><subject>Potential outcomes</subject><subject>Sensitivity analysis</subject><subject>Studies</subject><subject>Treatment effects</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLxDAQhYMouK7-BKHguXWSpmkKgsjiqrDgZT2HNJ1gim3WpLvivzdL9-5p4PHem5mPkFsKBQUq7vuiR-NHPxQMaJm0AiickQWVNcuFbKpzsoASeM6hFpfkKsYeACouywV52AbU04DjlKG1aNKIkxv05PyY_bjpMzP-oIPTE2YD6rgPOJtD8OGaXFj9FfHmNJfkY_28Xb3mm_eXt9XTJjecyylvqrLrdNVKarhpdM2tbQVjpkUrurquOmYaXjdCg21apIC2k5JrKTUTomVYLsnd3LsL_nufDlS934cxrVSU14JRaFiZXNXsMsHHGNCqXUifhF9FQR1BqV6dQKkjqKOcQKXc45zD9MLBYVDROBwNdi4kIKrz7p-GP20XdP8</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Battistin, Erich</creator><creator>Chesher, Andrew</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20140201</creationdate><title>Treatment effect estimation with covariate measurement error</title><author>Battistin, Erich ; Chesher, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-953dda5b81c4c9a74ffb622cbef6d775d2c94796a0f9be10efd884a88a266b2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Asymptotic methods</topic><topic>Econometrics</topic><topic>Measurement error</topic><topic>Measurement errors</topic><topic>Parameter asymptotics</topic><topic>Potential outcomes</topic><topic>Sensitivity analysis</topic><topic>Studies</topic><topic>Treatment effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Battistin, Erich</creatorcontrib><creatorcontrib>Chesher, Andrew</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Battistin, Erich</au><au>Chesher, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Treatment effect estimation with covariate measurement error</atitle><jtitle>Journal of econometrics</jtitle><date>2014-02-01</date><risdate>2014</risdate><volume>178</volume><issue>2</issue><spage>707</spage><epage>715</epage><pages>707-715</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><coden>JECMB6</coden><abstract>This paper investigates the effect that covariate measurement error has on a treatment effect analysis built on an unconfoundedness restriction in which there is conditioning on error free covariates. The approach uses small parameter asymptotic methods to obtain the approximate effects of measurement error for estimators of average treatment effects. The approximations can be estimated using data on observed outcomes, the treatment indicator and error contaminated covariates without employing additional information from validation data or instrumental variables. The results can be used in a sensitivity analysis to probe the potential effects of measurement error on the evaluation of treatment effects.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2013.10.010</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4076 |
ispartof | Journal of econometrics, 2014-02, Vol.178 (2), p.707-715 |
issn | 0304-4076 1872-6895 |
language | eng |
recordid | cdi_proquest_journals_1476210923 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Approximation Asymptotic methods Econometrics Measurement error Measurement errors Parameter asymptotics Potential outcomes Sensitivity analysis Studies Treatment effects |
title | Treatment effect estimation with covariate measurement error |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A36%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Treatment%20effect%20estimation%20with%20covariate%20measurement%20error&rft.jtitle=Journal%20of%20econometrics&rft.au=Battistin,%20Erich&rft.date=2014-02-01&rft.volume=178&rft.issue=2&rft.spage=707&rft.epage=715&rft.pages=707-715&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/j.jeconom.2013.10.010&rft_dat=%3Cproquest_cross%3E3177099681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1476210923&rft_id=info:pmid/&rft_els_id=S030440761300225X&rfr_iscdi=true |