Broadband terahertz generation from metamaterials
The terahertz spectral regime, ranging from about 0.1–15 THz, is one of the least explored yet most technologically transformative spectral regions. One current challenge is to develop efficient and compact terahertz emitters/detectors with a broadband and gapless spectrum that can be tailored for v...
Gespeichert in:
Veröffentlicht in: | Nature communications 2014-01, Vol.5 (1), p.3055, Article 3055 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 3055 |
container_title | Nature communications |
container_volume | 5 |
creator | Luo, Liang Chatzakis, Ioannis Wang, Jigang Niesler, Fabian B. P. Wegener, Martin Koschny, Thomas Soukoulis, Costas M. |
description | The terahertz spectral regime, ranging from about 0.1–15 THz, is one of the least explored yet most technologically transformative spectral regions. One current challenge is to develop efficient and compact terahertz emitters/detectors with a broadband and gapless spectrum that can be tailored for various pump photon energies. Here we demonstrate efficient single-cycle broadband THz generation, ranging from about 0.1–4 THz, from a thin layer of split-ring resonators with few tens of nanometers thickness by pumping at the telecommunications wavelength of 1.5 μm (200 THz). The terahertz emission arises from exciting the magnetic-dipole resonance of the split-ring resonators and quickly decreases under off-resonance pumping. This, together with pump polarization dependence and power scaling of the terahertz emission, identifies the role of optically induced nonlinear currents in split-ring resonators. We also reveal a giant sheet nonlinear susceptibility ~10
−16
m
2
V
−1
that far exceeds thin films and bulk non-centrosymmetric materials.
Finding broadband terahertz emitters and detectors is key to developing practical terahertz technologies and to exploring fundamental nonlinear optics. Luo
et al.
show that split-ring-resonator metamaterials of a few tens of nanometres thickness can efficiently generate terahertz pulses up to 4 THz. |
doi_str_mv | 10.1038/ncomms4055 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_journals_1475135792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3175501481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-908405178aab88bb6b8e6496354dc8b68f56b0b6e22de5847e5b806131f4b3643</originalsourceid><addsrcrecordid>eNplkM1LAzEQxYMottRe_ANkwZuymo9JNnvU4hcUvOh5SXZna4vZ1GR70L--ka1acC7zYH68NzxCThm9YlTo6672zkWgUh6QMafAclZwcbinR2Qa44qmESXTAMdkxAEoFxzGhN0GbxpruibrMZg3DP1XtsAu6X7pu6wN3mUOe-NMui_NezwhR21aON3tCXm9v3uZPebz54en2c08r0GKPi-pTk-xQhtjtbZWWY0KSiUkNLW2SrdSWWoVct6g1FCgtJoqJlgLVigQE3I--K6D_9hg7KuV34QuRVYMCsmELEqeqIuBqoOPMWBbrcPSmfBZMVp9F1T9FZTgs53lxjpsftGfOhJwOQAxnboFhr3M_3ZbgB5uuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1475135792</pqid></control><display><type>article</type><title>Broadband terahertz generation from metamaterials</title><source>Springer Nature OA Free Journals</source><creator>Luo, Liang ; Chatzakis, Ioannis ; Wang, Jigang ; Niesler, Fabian B. P. ; Wegener, Martin ; Koschny, Thomas ; Soukoulis, Costas M.</creator><creatorcontrib>Luo, Liang ; Chatzakis, Ioannis ; Wang, Jigang ; Niesler, Fabian B. P. ; Wegener, Martin ; Koschny, Thomas ; Soukoulis, Costas M.</creatorcontrib><description>The terahertz spectral regime, ranging from about 0.1–15 THz, is one of the least explored yet most technologically transformative spectral regions. One current challenge is to develop efficient and compact terahertz emitters/detectors with a broadband and gapless spectrum that can be tailored for various pump photon energies. Here we demonstrate efficient single-cycle broadband THz generation, ranging from about 0.1–4 THz, from a thin layer of split-ring resonators with few tens of nanometers thickness by pumping at the telecommunications wavelength of 1.5 μm (200 THz). The terahertz emission arises from exciting the magnetic-dipole resonance of the split-ring resonators and quickly decreases under off-resonance pumping. This, together with pump polarization dependence and power scaling of the terahertz emission, identifies the role of optically induced nonlinear currents in split-ring resonators. We also reveal a giant sheet nonlinear susceptibility ~10
−16
m
2
V
−1
that far exceeds thin films and bulk non-centrosymmetric materials.
Finding broadband terahertz emitters and detectors is key to developing practical terahertz technologies and to exploring fundamental nonlinear optics. Luo
et al.
show that split-ring-resonator metamaterials of a few tens of nanometres thickness can efficiently generate terahertz pulses up to 4 THz.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms4055</identifier><identifier>PMID: 24402324</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/624/1075 ; 639/624/399/1015 ; 639/624/400/561 ; Bandwidths ; Crystals ; Electrons ; Humanities and Social Sciences ; Lasers ; multidisciplinary ; Optics ; Physics ; Radiation ; Science ; Science (multidisciplinary) ; Spectrum allocation ; Spectrum analysis ; Velocity</subject><ispartof>Nature communications, 2014-01, Vol.5 (1), p.3055, Article 3055</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Jan 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-908405178aab88bb6b8e6496354dc8b68f56b0b6e22de5847e5b806131f4b3643</citedby><cites>FETCH-LOGICAL-c453t-908405178aab88bb6b8e6496354dc8b68f56b0b6e22de5847e5b806131f4b3643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms4055$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms4055$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41096,42165,51551</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms4055$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24402324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Liang</creatorcontrib><creatorcontrib>Chatzakis, Ioannis</creatorcontrib><creatorcontrib>Wang, Jigang</creatorcontrib><creatorcontrib>Niesler, Fabian B. P.</creatorcontrib><creatorcontrib>Wegener, Martin</creatorcontrib><creatorcontrib>Koschny, Thomas</creatorcontrib><creatorcontrib>Soukoulis, Costas M.</creatorcontrib><title>Broadband terahertz generation from metamaterials</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The terahertz spectral regime, ranging from about 0.1–15 THz, is one of the least explored yet most technologically transformative spectral regions. One current challenge is to develop efficient and compact terahertz emitters/detectors with a broadband and gapless spectrum that can be tailored for various pump photon energies. Here we demonstrate efficient single-cycle broadband THz generation, ranging from about 0.1–4 THz, from a thin layer of split-ring resonators with few tens of nanometers thickness by pumping at the telecommunications wavelength of 1.5 μm (200 THz). The terahertz emission arises from exciting the magnetic-dipole resonance of the split-ring resonators and quickly decreases under off-resonance pumping. This, together with pump polarization dependence and power scaling of the terahertz emission, identifies the role of optically induced nonlinear currents in split-ring resonators. We also reveal a giant sheet nonlinear susceptibility ~10
−16
m
2
V
−1
that far exceeds thin films and bulk non-centrosymmetric materials.
Finding broadband terahertz emitters and detectors is key to developing practical terahertz technologies and to exploring fundamental nonlinear optics. Luo
et al.
show that split-ring-resonator metamaterials of a few tens of nanometres thickness can efficiently generate terahertz pulses up to 4 THz.</description><subject>140/125</subject><subject>639/624/1075</subject><subject>639/624/399/1015</subject><subject>639/624/400/561</subject><subject>Bandwidths</subject><subject>Crystals</subject><subject>Electrons</subject><subject>Humanities and Social Sciences</subject><subject>Lasers</subject><subject>multidisciplinary</subject><subject>Optics</subject><subject>Physics</subject><subject>Radiation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spectrum allocation</subject><subject>Spectrum analysis</subject><subject>Velocity</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNplkM1LAzEQxYMottRe_ANkwZuymo9JNnvU4hcUvOh5SXZna4vZ1GR70L--ka1acC7zYH68NzxCThm9YlTo6672zkWgUh6QMafAclZwcbinR2Qa44qmESXTAMdkxAEoFxzGhN0GbxpruibrMZg3DP1XtsAu6X7pu6wN3mUOe-NMui_NezwhR21aON3tCXm9v3uZPebz54en2c08r0GKPi-pTk-xQhtjtbZWWY0KSiUkNLW2SrdSWWoVct6g1FCgtJoqJlgLVigQE3I--K6D_9hg7KuV34QuRVYMCsmELEqeqIuBqoOPMWBbrcPSmfBZMVp9F1T9FZTgs53lxjpsftGfOhJwOQAxnboFhr3M_3ZbgB5uuA</recordid><startdate>20140108</startdate><enddate>20140108</enddate><creator>Luo, Liang</creator><creator>Chatzakis, Ioannis</creator><creator>Wang, Jigang</creator><creator>Niesler, Fabian B. P.</creator><creator>Wegener, Martin</creator><creator>Koschny, Thomas</creator><creator>Soukoulis, Costas M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>20140108</creationdate><title>Broadband terahertz generation from metamaterials</title><author>Luo, Liang ; Chatzakis, Ioannis ; Wang, Jigang ; Niesler, Fabian B. P. ; Wegener, Martin ; Koschny, Thomas ; Soukoulis, Costas M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-908405178aab88bb6b8e6496354dc8b68f56b0b6e22de5847e5b806131f4b3643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>140/125</topic><topic>639/624/1075</topic><topic>639/624/399/1015</topic><topic>639/624/400/561</topic><topic>Bandwidths</topic><topic>Crystals</topic><topic>Electrons</topic><topic>Humanities and Social Sciences</topic><topic>Lasers</topic><topic>multidisciplinary</topic><topic>Optics</topic><topic>Physics</topic><topic>Radiation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spectrum allocation</topic><topic>Spectrum analysis</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Liang</creatorcontrib><creatorcontrib>Chatzakis, Ioannis</creatorcontrib><creatorcontrib>Wang, Jigang</creatorcontrib><creatorcontrib>Niesler, Fabian B. P.</creatorcontrib><creatorcontrib>Wegener, Martin</creatorcontrib><creatorcontrib>Koschny, Thomas</creatorcontrib><creatorcontrib>Soukoulis, Costas M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Luo, Liang</au><au>Chatzakis, Ioannis</au><au>Wang, Jigang</au><au>Niesler, Fabian B. P.</au><au>Wegener, Martin</au><au>Koschny, Thomas</au><au>Soukoulis, Costas M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband terahertz generation from metamaterials</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-01-08</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>3055</spage><pages>3055-</pages><artnum>3055</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The terahertz spectral regime, ranging from about 0.1–15 THz, is one of the least explored yet most technologically transformative spectral regions. One current challenge is to develop efficient and compact terahertz emitters/detectors with a broadband and gapless spectrum that can be tailored for various pump photon energies. Here we demonstrate efficient single-cycle broadband THz generation, ranging from about 0.1–4 THz, from a thin layer of split-ring resonators with few tens of nanometers thickness by pumping at the telecommunications wavelength of 1.5 μm (200 THz). The terahertz emission arises from exciting the magnetic-dipole resonance of the split-ring resonators and quickly decreases under off-resonance pumping. This, together with pump polarization dependence and power scaling of the terahertz emission, identifies the role of optically induced nonlinear currents in split-ring resonators. We also reveal a giant sheet nonlinear susceptibility ~10
−16
m
2
V
−1
that far exceeds thin films and bulk non-centrosymmetric materials.
Finding broadband terahertz emitters and detectors is key to developing practical terahertz technologies and to exploring fundamental nonlinear optics. Luo
et al.
show that split-ring-resonator metamaterials of a few tens of nanometres thickness can efficiently generate terahertz pulses up to 4 THz.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24402324</pmid><doi>10.1038/ncomms4055</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2014-01, Vol.5 (1), p.3055, Article 3055 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_proquest_journals_1475135792 |
source | Springer Nature OA Free Journals |
subjects | 140/125 639/624/1075 639/624/399/1015 639/624/400/561 Bandwidths Crystals Electrons Humanities and Social Sciences Lasers multidisciplinary Optics Physics Radiation Science Science (multidisciplinary) Spectrum allocation Spectrum analysis Velocity |
title | Broadband terahertz generation from metamaterials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A34%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20terahertz%20generation%20from%20metamaterials&rft.jtitle=Nature%20communications&rft.au=Luo,%20Liang&rft.date=2014-01-08&rft.volume=5&rft.issue=1&rft.spage=3055&rft.pages=3055-&rft.artnum=3055&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms4055&rft_dat=%3Cproquest_C6C%3E3175501481%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1475135792&rft_id=info:pmid/24402324&rfr_iscdi=true |