On the Weight Hierarchy of Codes Coming From Semigroups With Two Generators

The weight hierarchy of one-point algebraic geometry codes can be estimated by means of the generalized order bounds, which are described in terms of a certain Weierstrass semigroup. The asymptotical behavior of such bounds for r ≥ 2 differs from that of the classical Feng-Rao distance (r=1) by the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2014-01, Vol.60 (1), p.282-295
Hauptverfasser: Delgado, Manuel, Farran, Jose I., Garcia-Sanchez, Pedro A., Llena, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 295
container_issue 1
container_start_page 282
container_title IEEE transactions on information theory
container_volume 60
creator Delgado, Manuel
Farran, Jose I.
Garcia-Sanchez, Pedro A.
Llena, David
description The weight hierarchy of one-point algebraic geometry codes can be estimated by means of the generalized order bounds, which are described in terms of a certain Weierstrass semigroup. The asymptotical behavior of such bounds for r ≥ 2 differs from that of the classical Feng-Rao distance (r=1) by the so-called Feng-Rao numbers. This paper is addressed to compute the Feng-Rao numbers for numerical semigroups of embedding dimension two (with two generators), obtaining a closed simple formula for the general case by using numerical semigroup techniques. These involve the computation of the Apéry set with respect to an integer of the semigroups under consideration. The formula obtained is applied to lower bounding the generalized Hamming weights, improving the bound given by Kirfel and Pellikaan in terms of the classical Feng-Rao distance. We also compare our bound with a modification of the Griesmer bound, improving this one in many cases.
doi_str_mv 10.1109/TIT.2013.2285217
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1474884550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6655888</ieee_id><sourcerecordid>3174559181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-9dcc2ee4e9a7577e6857b3e2b9fda3d8328c02c7115cc4479caa318246f8f67a3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcF8Zi6n9ndoxT7gYUejPQYtptJk9Jk626K9N-b0tLLDMM87ww8CD1TMqKUmPdsno0YoXzEmJaMqhs0oFKqxKRS3KIBIVQnRgh9jx5i3PajkJQN0NeyxV0FeAX1purwrIZgg6uO2Jd47AuIfW3qdoMnwTf4G5p6E_xhH_Gq7iqc_Xk8hbbPdD7ER3RX2l2Ep0sfop_JZzaeJYvldD7-WCSOp7xLTOEcAxBgrJJKQaqlWnNga1MWlheaM-0Ic4pS6ZwQyjhrOdVMpKUuU2X5EL2e7-6D_z1A7PKtP4S2f5lToYTWQkrSU-RMueBjDFDm-1A3NhxzSvKTsrxXlp-U5RdlfeTtcthGZ3dlsK2r4zXHNBVGMdZzL2euBoDrOk2l1Frzf2vJc00</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1474884550</pqid></control><display><type>article</type><title>On the Weight Hierarchy of Codes Coming From Semigroups With Two Generators</title><source>IEEE Electronic Library (IEL)</source><creator>Delgado, Manuel ; Farran, Jose I. ; Garcia-Sanchez, Pedro A. ; Llena, David</creator><creatorcontrib>Delgado, Manuel ; Farran, Jose I. ; Garcia-Sanchez, Pedro A. ; Llena, David</creatorcontrib><description>The weight hierarchy of one-point algebraic geometry codes can be estimated by means of the generalized order bounds, which are described in terms of a certain Weierstrass semigroup. The asymptotical behavior of such bounds for r ≥ 2 differs from that of the classical Feng-Rao distance (r=1) by the so-called Feng-Rao numbers. This paper is addressed to compute the Feng-Rao numbers for numerical semigroups of embedding dimension two (with two generators), obtaining a closed simple formula for the general case by using numerical semigroup techniques. These involve the computation of the Apéry set with respect to an integer of the semigroups under consideration. The formula obtained is applied to lower bounding the generalized Hamming weights, improving the bound given by Kirfel and Pellikaan in terms of the classical Feng-Rao distance. We also compare our bound with a modification of the Griesmer bound, improving this one in many cases.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2013.2285217</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>AG codes ; Algebra ; Applied sciences ; Arrays ; Coding, codes ; Conductors ; Decoding ; Electrical engineering ; Erbium ; Exact sciences and technology ; Feng-Rao numbers ; Frequency modulation ; Generators ; Goppa-like bounds ; Hamming weight ; Information theory ; Information, signal and communications theory ; numerical semigroups ; order bounds ; Signal and communications theory ; Telecommunications and information theory ; weight hierarchy</subject><ispartof>IEEE transactions on information theory, 2014-01, Vol.60 (1), p.282-295</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-9dcc2ee4e9a7577e6857b3e2b9fda3d8328c02c7115cc4479caa318246f8f67a3</citedby><cites>FETCH-LOGICAL-c363t-9dcc2ee4e9a7577e6857b3e2b9fda3d8328c02c7115cc4479caa318246f8f67a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6655888$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6655888$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28149722$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Delgado, Manuel</creatorcontrib><creatorcontrib>Farran, Jose I.</creatorcontrib><creatorcontrib>Garcia-Sanchez, Pedro A.</creatorcontrib><creatorcontrib>Llena, David</creatorcontrib><title>On the Weight Hierarchy of Codes Coming From Semigroups With Two Generators</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>The weight hierarchy of one-point algebraic geometry codes can be estimated by means of the generalized order bounds, which are described in terms of a certain Weierstrass semigroup. The asymptotical behavior of such bounds for r ≥ 2 differs from that of the classical Feng-Rao distance (r=1) by the so-called Feng-Rao numbers. This paper is addressed to compute the Feng-Rao numbers for numerical semigroups of embedding dimension two (with two generators), obtaining a closed simple formula for the general case by using numerical semigroup techniques. These involve the computation of the Apéry set with respect to an integer of the semigroups under consideration. The formula obtained is applied to lower bounding the generalized Hamming weights, improving the bound given by Kirfel and Pellikaan in terms of the classical Feng-Rao distance. We also compare our bound with a modification of the Griesmer bound, improving this one in many cases.</description><subject>AG codes</subject><subject>Algebra</subject><subject>Applied sciences</subject><subject>Arrays</subject><subject>Coding, codes</subject><subject>Conductors</subject><subject>Decoding</subject><subject>Electrical engineering</subject><subject>Erbium</subject><subject>Exact sciences and technology</subject><subject>Feng-Rao numbers</subject><subject>Frequency modulation</subject><subject>Generators</subject><subject>Goppa-like bounds</subject><subject>Hamming weight</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>numerical semigroups</subject><subject>order bounds</subject><subject>Signal and communications theory</subject><subject>Telecommunications and information theory</subject><subject>weight hierarchy</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpcF8Zi6n9ndoxT7gYUejPQYtptJk9Jk626K9N-b0tLLDMM87ww8CD1TMqKUmPdsno0YoXzEmJaMqhs0oFKqxKRS3KIBIVQnRgh9jx5i3PajkJQN0NeyxV0FeAX1purwrIZgg6uO2Jd47AuIfW3qdoMnwTf4G5p6E_xhH_Gq7iqc_Xk8hbbPdD7ER3RX2l2Ep0sfop_JZzaeJYvldD7-WCSOp7xLTOEcAxBgrJJKQaqlWnNga1MWlheaM-0Ic4pS6ZwQyjhrOdVMpKUuU2X5EL2e7-6D_z1A7PKtP4S2f5lToYTWQkrSU-RMueBjDFDm-1A3NhxzSvKTsrxXlp-U5RdlfeTtcthGZ3dlsK2r4zXHNBVGMdZzL2euBoDrOk2l1Frzf2vJc00</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Delgado, Manuel</creator><creator>Farran, Jose I.</creator><creator>Garcia-Sanchez, Pedro A.</creator><creator>Llena, David</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201401</creationdate><title>On the Weight Hierarchy of Codes Coming From Semigroups With Two Generators</title><author>Delgado, Manuel ; Farran, Jose I. ; Garcia-Sanchez, Pedro A. ; Llena, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-9dcc2ee4e9a7577e6857b3e2b9fda3d8328c02c7115cc4479caa318246f8f67a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>AG codes</topic><topic>Algebra</topic><topic>Applied sciences</topic><topic>Arrays</topic><topic>Coding, codes</topic><topic>Conductors</topic><topic>Decoding</topic><topic>Electrical engineering</topic><topic>Erbium</topic><topic>Exact sciences and technology</topic><topic>Feng-Rao numbers</topic><topic>Frequency modulation</topic><topic>Generators</topic><topic>Goppa-like bounds</topic><topic>Hamming weight</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>numerical semigroups</topic><topic>order bounds</topic><topic>Signal and communications theory</topic><topic>Telecommunications and information theory</topic><topic>weight hierarchy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delgado, Manuel</creatorcontrib><creatorcontrib>Farran, Jose I.</creatorcontrib><creatorcontrib>Garcia-Sanchez, Pedro A.</creatorcontrib><creatorcontrib>Llena, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Delgado, Manuel</au><au>Farran, Jose I.</au><au>Garcia-Sanchez, Pedro A.</au><au>Llena, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Weight Hierarchy of Codes Coming From Semigroups With Two Generators</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2014-01</date><risdate>2014</risdate><volume>60</volume><issue>1</issue><spage>282</spage><epage>295</epage><pages>282-295</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>The weight hierarchy of one-point algebraic geometry codes can be estimated by means of the generalized order bounds, which are described in terms of a certain Weierstrass semigroup. The asymptotical behavior of such bounds for r ≥ 2 differs from that of the classical Feng-Rao distance (r=1) by the so-called Feng-Rao numbers. This paper is addressed to compute the Feng-Rao numbers for numerical semigroups of embedding dimension two (with two generators), obtaining a closed simple formula for the general case by using numerical semigroup techniques. These involve the computation of the Apéry set with respect to an integer of the semigroups under consideration. The formula obtained is applied to lower bounding the generalized Hamming weights, improving the bound given by Kirfel and Pellikaan in terms of the classical Feng-Rao distance. We also compare our bound with a modification of the Griesmer bound, improving this one in many cases.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2013.2285217</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2014-01, Vol.60 (1), p.282-295
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_journals_1474884550
source IEEE Electronic Library (IEL)
subjects AG codes
Algebra
Applied sciences
Arrays
Coding, codes
Conductors
Decoding
Electrical engineering
Erbium
Exact sciences and technology
Feng-Rao numbers
Frequency modulation
Generators
Goppa-like bounds
Hamming weight
Information theory
Information, signal and communications theory
numerical semigroups
order bounds
Signal and communications theory
Telecommunications and information theory
weight hierarchy
title On the Weight Hierarchy of Codes Coming From Semigroups With Two Generators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Weight%20Hierarchy%20of%20Codes%20Coming%20From%20Semigroups%20With%20Two%20Generators&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Delgado,%20Manuel&rft.date=2014-01&rft.volume=60&rft.issue=1&rft.spage=282&rft.epage=295&rft.pages=282-295&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2013.2285217&rft_dat=%3Cproquest_RIE%3E3174559181%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1474884550&rft_id=info:pmid/&rft_ieee_id=6655888&rfr_iscdi=true