On the Weight Hierarchy of Codes Coming From Semigroups With Two Generators
The weight hierarchy of one-point algebraic geometry codes can be estimated by means of the generalized order bounds, which are described in terms of a certain Weierstrass semigroup. The asymptotical behavior of such bounds for r ≥ 2 differs from that of the classical Feng-Rao distance (r=1) by the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2014-01, Vol.60 (1), p.282-295 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 295 |
---|---|
container_issue | 1 |
container_start_page | 282 |
container_title | IEEE transactions on information theory |
container_volume | 60 |
creator | Delgado, Manuel Farran, Jose I. Garcia-Sanchez, Pedro A. Llena, David |
description | The weight hierarchy of one-point algebraic geometry codes can be estimated by means of the generalized order bounds, which are described in terms of a certain Weierstrass semigroup. The asymptotical behavior of such bounds for r ≥ 2 differs from that of the classical Feng-Rao distance (r=1) by the so-called Feng-Rao numbers. This paper is addressed to compute the Feng-Rao numbers for numerical semigroups of embedding dimension two (with two generators), obtaining a closed simple formula for the general case by using numerical semigroup techniques. These involve the computation of the Apéry set with respect to an integer of the semigroups under consideration. The formula obtained is applied to lower bounding the generalized Hamming weights, improving the bound given by Kirfel and Pellikaan in terms of the classical Feng-Rao distance. We also compare our bound with a modification of the Griesmer bound, improving this one in many cases. |
doi_str_mv | 10.1109/TIT.2013.2285217 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1474884550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6655888</ieee_id><sourcerecordid>3174559181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-9dcc2ee4e9a7577e6857b3e2b9fda3d8328c02c7115cc4479caa318246f8f67a3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcF8Zi6n9ndoxT7gYUejPQYtptJk9Jk626K9N-b0tLLDMM87ww8CD1TMqKUmPdsno0YoXzEmJaMqhs0oFKqxKRS3KIBIVQnRgh9jx5i3PajkJQN0NeyxV0FeAX1purwrIZgg6uO2Jd47AuIfW3qdoMnwTf4G5p6E_xhH_Gq7iqc_Xk8hbbPdD7ER3RX2l2Ep0sfop_JZzaeJYvldD7-WCSOp7xLTOEcAxBgrJJKQaqlWnNga1MWlheaM-0Ic4pS6ZwQyjhrOdVMpKUuU2X5EL2e7-6D_z1A7PKtP4S2f5lToYTWQkrSU-RMueBjDFDm-1A3NhxzSvKTsrxXlp-U5RdlfeTtcthGZ3dlsK2r4zXHNBVGMdZzL2euBoDrOk2l1Frzf2vJc00</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1474884550</pqid></control><display><type>article</type><title>On the Weight Hierarchy of Codes Coming From Semigroups With Two Generators</title><source>IEEE Electronic Library (IEL)</source><creator>Delgado, Manuel ; Farran, Jose I. ; Garcia-Sanchez, Pedro A. ; Llena, David</creator><creatorcontrib>Delgado, Manuel ; Farran, Jose I. ; Garcia-Sanchez, Pedro A. ; Llena, David</creatorcontrib><description>The weight hierarchy of one-point algebraic geometry codes can be estimated by means of the generalized order bounds, which are described in terms of a certain Weierstrass semigroup. The asymptotical behavior of such bounds for r ≥ 2 differs from that of the classical Feng-Rao distance (r=1) by the so-called Feng-Rao numbers. This paper is addressed to compute the Feng-Rao numbers for numerical semigroups of embedding dimension two (with two generators), obtaining a closed simple formula for the general case by using numerical semigroup techniques. These involve the computation of the Apéry set with respect to an integer of the semigroups under consideration. The formula obtained is applied to lower bounding the generalized Hamming weights, improving the bound given by Kirfel and Pellikaan in terms of the classical Feng-Rao distance. We also compare our bound with a modification of the Griesmer bound, improving this one in many cases.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2013.2285217</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>AG codes ; Algebra ; Applied sciences ; Arrays ; Coding, codes ; Conductors ; Decoding ; Electrical engineering ; Erbium ; Exact sciences and technology ; Feng-Rao numbers ; Frequency modulation ; Generators ; Goppa-like bounds ; Hamming weight ; Information theory ; Information, signal and communications theory ; numerical semigroups ; order bounds ; Signal and communications theory ; Telecommunications and information theory ; weight hierarchy</subject><ispartof>IEEE transactions on information theory, 2014-01, Vol.60 (1), p.282-295</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-9dcc2ee4e9a7577e6857b3e2b9fda3d8328c02c7115cc4479caa318246f8f67a3</citedby><cites>FETCH-LOGICAL-c363t-9dcc2ee4e9a7577e6857b3e2b9fda3d8328c02c7115cc4479caa318246f8f67a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6655888$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6655888$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28149722$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Delgado, Manuel</creatorcontrib><creatorcontrib>Farran, Jose I.</creatorcontrib><creatorcontrib>Garcia-Sanchez, Pedro A.</creatorcontrib><creatorcontrib>Llena, David</creatorcontrib><title>On the Weight Hierarchy of Codes Coming From Semigroups With Two Generators</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>The weight hierarchy of one-point algebraic geometry codes can be estimated by means of the generalized order bounds, which are described in terms of a certain Weierstrass semigroup. The asymptotical behavior of such bounds for r ≥ 2 differs from that of the classical Feng-Rao distance (r=1) by the so-called Feng-Rao numbers. This paper is addressed to compute the Feng-Rao numbers for numerical semigroups of embedding dimension two (with two generators), obtaining a closed simple formula for the general case by using numerical semigroup techniques. These involve the computation of the Apéry set with respect to an integer of the semigroups under consideration. The formula obtained is applied to lower bounding the generalized Hamming weights, improving the bound given by Kirfel and Pellikaan in terms of the classical Feng-Rao distance. We also compare our bound with a modification of the Griesmer bound, improving this one in many cases.</description><subject>AG codes</subject><subject>Algebra</subject><subject>Applied sciences</subject><subject>Arrays</subject><subject>Coding, codes</subject><subject>Conductors</subject><subject>Decoding</subject><subject>Electrical engineering</subject><subject>Erbium</subject><subject>Exact sciences and technology</subject><subject>Feng-Rao numbers</subject><subject>Frequency modulation</subject><subject>Generators</subject><subject>Goppa-like bounds</subject><subject>Hamming weight</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>numerical semigroups</subject><subject>order bounds</subject><subject>Signal and communications theory</subject><subject>Telecommunications and information theory</subject><subject>weight hierarchy</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpcF8Zi6n9ndoxT7gYUejPQYtptJk9Jk626K9N-b0tLLDMM87ww8CD1TMqKUmPdsno0YoXzEmJaMqhs0oFKqxKRS3KIBIVQnRgh9jx5i3PajkJQN0NeyxV0FeAX1purwrIZgg6uO2Jd47AuIfW3qdoMnwTf4G5p6E_xhH_Gq7iqc_Xk8hbbPdD7ER3RX2l2Ep0sfop_JZzaeJYvldD7-WCSOp7xLTOEcAxBgrJJKQaqlWnNga1MWlheaM-0Ic4pS6ZwQyjhrOdVMpKUuU2X5EL2e7-6D_z1A7PKtP4S2f5lToYTWQkrSU-RMueBjDFDm-1A3NhxzSvKTsrxXlp-U5RdlfeTtcthGZ3dlsK2r4zXHNBVGMdZzL2euBoDrOk2l1Frzf2vJc00</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Delgado, Manuel</creator><creator>Farran, Jose I.</creator><creator>Garcia-Sanchez, Pedro A.</creator><creator>Llena, David</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201401</creationdate><title>On the Weight Hierarchy of Codes Coming From Semigroups With Two Generators</title><author>Delgado, Manuel ; Farran, Jose I. ; Garcia-Sanchez, Pedro A. ; Llena, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-9dcc2ee4e9a7577e6857b3e2b9fda3d8328c02c7115cc4479caa318246f8f67a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>AG codes</topic><topic>Algebra</topic><topic>Applied sciences</topic><topic>Arrays</topic><topic>Coding, codes</topic><topic>Conductors</topic><topic>Decoding</topic><topic>Electrical engineering</topic><topic>Erbium</topic><topic>Exact sciences and technology</topic><topic>Feng-Rao numbers</topic><topic>Frequency modulation</topic><topic>Generators</topic><topic>Goppa-like bounds</topic><topic>Hamming weight</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>numerical semigroups</topic><topic>order bounds</topic><topic>Signal and communications theory</topic><topic>Telecommunications and information theory</topic><topic>weight hierarchy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delgado, Manuel</creatorcontrib><creatorcontrib>Farran, Jose I.</creatorcontrib><creatorcontrib>Garcia-Sanchez, Pedro A.</creatorcontrib><creatorcontrib>Llena, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Delgado, Manuel</au><au>Farran, Jose I.</au><au>Garcia-Sanchez, Pedro A.</au><au>Llena, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Weight Hierarchy of Codes Coming From Semigroups With Two Generators</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2014-01</date><risdate>2014</risdate><volume>60</volume><issue>1</issue><spage>282</spage><epage>295</epage><pages>282-295</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>The weight hierarchy of one-point algebraic geometry codes can be estimated by means of the generalized order bounds, which are described in terms of a certain Weierstrass semigroup. The asymptotical behavior of such bounds for r ≥ 2 differs from that of the classical Feng-Rao distance (r=1) by the so-called Feng-Rao numbers. This paper is addressed to compute the Feng-Rao numbers for numerical semigroups of embedding dimension two (with two generators), obtaining a closed simple formula for the general case by using numerical semigroup techniques. These involve the computation of the Apéry set with respect to an integer of the semigroups under consideration. The formula obtained is applied to lower bounding the generalized Hamming weights, improving the bound given by Kirfel and Pellikaan in terms of the classical Feng-Rao distance. We also compare our bound with a modification of the Griesmer bound, improving this one in many cases.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2013.2285217</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2014-01, Vol.60 (1), p.282-295 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_journals_1474884550 |
source | IEEE Electronic Library (IEL) |
subjects | AG codes Algebra Applied sciences Arrays Coding, codes Conductors Decoding Electrical engineering Erbium Exact sciences and technology Feng-Rao numbers Frequency modulation Generators Goppa-like bounds Hamming weight Information theory Information, signal and communications theory numerical semigroups order bounds Signal and communications theory Telecommunications and information theory weight hierarchy |
title | On the Weight Hierarchy of Codes Coming From Semigroups With Two Generators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Weight%20Hierarchy%20of%20Codes%20Coming%20From%20Semigroups%20With%20Two%20Generators&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Delgado,%20Manuel&rft.date=2014-01&rft.volume=60&rft.issue=1&rft.spage=282&rft.epage=295&rft.pages=282-295&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2013.2285217&rft_dat=%3Cproquest_RIE%3E3174559181%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1474884550&rft_id=info:pmid/&rft_ieee_id=6655888&rfr_iscdi=true |