Finite-Sample Variance of Local Polynomials: Analysis and Solutions

Fitting local polynomials in nonparametric regression has a number of advantages. The attractive theoretical features are in a partial contradiction to variance properties for random design and to practical experience over a broad range of situations. No upper bound can be given for the conditional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 1996-03, Vol.91 (433), p.267-275
Hauptverfasser: Seifert, Burkhardt, Gasser, Theo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 275
container_issue 433
container_start_page 267
container_title Journal of the American Statistical Association
container_volume 91
creator Seifert, Burkhardt
Gasser, Theo
description Fitting local polynomials in nonparametric regression has a number of advantages. The attractive theoretical features are in a partial contradiction to variance properties for random design and to practical experience over a broad range of situations. No upper bound can be given for the conditional variance. The unconditional variance is infinite when using optimal weights with compact support. Properties are better for Gaussian weights. We analyze local polynomials for finite sample size, both theoretically and numerically. It turns out that difficulties arise in sparse regions in the realization of the design, when the realization has locally a small variance and/or a skew empirical distribution. Two small-sample modifications of local polynomials are presented: local increase of bandwidth in sparse regions of the design, and local polynomial ridge regression. Both modifications combine a good finite-sample behavior with the asymptotic advantages of local polynomials.
doi_str_mv 10.1080/01621459.1996.10476685
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1474333572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2291404</jstor_id><sourcerecordid>2291404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-ca5e397bc69cf1e79890e011a2b63872552c697dc176e52b747a0efff574851c3</originalsourceid><addsrcrecordid>eNqFkFtrGzEQRkVpoK6Tv1CWJPRtHd0veTOmaQuGBJyUvglZlkBGu3KkNcH_PjK2SyiEzMvAzJmP4QDwDcEJghLeQMQxokxNkFK8jqjgXLJPYIQYES0W9O9nMNpD7Z76Ar6Wsoa1hJQjMLsLfRhcuzDdJrrmj8nB9NY1yTfzZE1sHlLc9akLJpbbZtqbuCuhNKZfNYsUt0NIfTkHZ76u3cWxj8HT3Y_H2a92fv_z92w6by0lfGitYY4osbRcWY-cUFJBBxEyeMmJFJgxXFdiZZHgjuGloMJA571ngkqGLBmD74fcTU7PW1cG3YViXYymd2lbNKmBUhBVwcv_wHXa5vp70VWHlExRVqGr9yBEBSWEMIErxQ-UzamU7Lze5NCZvNMI6r1-fdKv9_r1SX89vD7Gm1I9-ly1hvLvmkCmJHqDrcuQ8ttwTKDQGCtEIa3Y9ICF3qfcmZeU40oPZhdTPkWTDz56BU-7oeY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1474333572</pqid></control><display><type>article</type><title>Finite-Sample Variance of Local Polynomials: Analysis and Solutions</title><source>Periodicals Index Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Seifert, Burkhardt ; Gasser, Theo</creator><creatorcontrib>Seifert, Burkhardt ; Gasser, Theo</creatorcontrib><description>Fitting local polynomials in nonparametric regression has a number of advantages. The attractive theoretical features are in a partial contradiction to variance properties for random design and to practical experience over a broad range of situations. No upper bound can be given for the conditional variance. The unconditional variance is infinite when using optimal weights with compact support. Properties are better for Gaussian weights. We analyze local polynomials for finite sample size, both theoretically and numerically. It turns out that difficulties arise in sparse regions in the realization of the design, when the realization has locally a small variance and/or a skew empirical distribution. Two small-sample modifications of local polynomials are presented: local increase of bandwidth in sparse regions of the design, and local polynomial ridge regression. Both modifications combine a good finite-sample behavior with the asymptotic advantages of local polynomials.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.1996.10476685</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria, VA: Taylor &amp; Francis Group</publisher><subject>Data smoothing ; Estimation bias ; Estimators ; Exact sciences and technology ; Linear inference, regression ; Linear regression ; Mathematics ; Minimax ; Nonparametric estimation ; Nonparametric inference ; Nonparametric regression ; Polynomials ; Probabilities ; Probability and statistics ; Regression analysis ; Ridge regression ; Sample size ; Sample variance ; Sciences and techniques of general use ; Smoothing ; Statistical methods ; Statistical variance ; Statistics ; Theory and Methods ; Weight function ; Weighting functions</subject><ispartof>Journal of the American Statistical Association, 1996-03, Vol.91 (433), p.267-275</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1996</rights><rights>Copyright 1996 American Statistical Association</rights><rights>1996 INIST-CNRS</rights><rights>Copyright American Statistical Association Mar 1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-ca5e397bc69cf1e79890e011a2b63872552c697dc176e52b747a0efff574851c3</citedby><cites>FETCH-LOGICAL-c436t-ca5e397bc69cf1e79890e011a2b63872552c697dc176e52b747a0efff574851c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2291404$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2291404$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27868,27923,27924,58016,58020,58249,58253</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3059815$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Seifert, Burkhardt</creatorcontrib><creatorcontrib>Gasser, Theo</creatorcontrib><title>Finite-Sample Variance of Local Polynomials: Analysis and Solutions</title><title>Journal of the American Statistical Association</title><description>Fitting local polynomials in nonparametric regression has a number of advantages. The attractive theoretical features are in a partial contradiction to variance properties for random design and to practical experience over a broad range of situations. No upper bound can be given for the conditional variance. The unconditional variance is infinite when using optimal weights with compact support. Properties are better for Gaussian weights. We analyze local polynomials for finite sample size, both theoretically and numerically. It turns out that difficulties arise in sparse regions in the realization of the design, when the realization has locally a small variance and/or a skew empirical distribution. Two small-sample modifications of local polynomials are presented: local increase of bandwidth in sparse regions of the design, and local polynomial ridge regression. Both modifications combine a good finite-sample behavior with the asymptotic advantages of local polynomials.</description><subject>Data smoothing</subject><subject>Estimation bias</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Linear inference, regression</subject><subject>Linear regression</subject><subject>Mathematics</subject><subject>Minimax</subject><subject>Nonparametric estimation</subject><subject>Nonparametric inference</subject><subject>Nonparametric regression</subject><subject>Polynomials</subject><subject>Probabilities</subject><subject>Probability and statistics</subject><subject>Regression analysis</subject><subject>Ridge regression</subject><subject>Sample size</subject><subject>Sample variance</subject><subject>Sciences and techniques of general use</subject><subject>Smoothing</subject><subject>Statistical methods</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Theory and Methods</subject><subject>Weight function</subject><subject>Weighting functions</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqFkFtrGzEQRkVpoK6Tv1CWJPRtHd0veTOmaQuGBJyUvglZlkBGu3KkNcH_PjK2SyiEzMvAzJmP4QDwDcEJghLeQMQxokxNkFK8jqjgXLJPYIQYES0W9O9nMNpD7Z76Ar6Wsoa1hJQjMLsLfRhcuzDdJrrmj8nB9NY1yTfzZE1sHlLc9akLJpbbZtqbuCuhNKZfNYsUt0NIfTkHZ76u3cWxj8HT3Y_H2a92fv_z92w6by0lfGitYY4osbRcWY-cUFJBBxEyeMmJFJgxXFdiZZHgjuGloMJA571ngkqGLBmD74fcTU7PW1cG3YViXYymd2lbNKmBUhBVwcv_wHXa5vp70VWHlExRVqGr9yBEBSWEMIErxQ-UzamU7Lze5NCZvNMI6r1-fdKv9_r1SX89vD7Gm1I9-ly1hvLvmkCmJHqDrcuQ8ttwTKDQGCtEIa3Y9ICF3qfcmZeU40oPZhdTPkWTDz56BU-7oeY</recordid><startdate>19960301</startdate><enddate>19960301</enddate><creator>Seifert, Burkhardt</creator><creator>Gasser, Theo</creator><general>Taylor &amp; Francis Group</general><general>American Statistical Association</general><general>Taylor &amp; Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JRZRW</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>19960301</creationdate><title>Finite-Sample Variance of Local Polynomials: Analysis and Solutions</title><author>Seifert, Burkhardt ; Gasser, Theo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-ca5e397bc69cf1e79890e011a2b63872552c697dc176e52b747a0efff574851c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Data smoothing</topic><topic>Estimation bias</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Linear inference, regression</topic><topic>Linear regression</topic><topic>Mathematics</topic><topic>Minimax</topic><topic>Nonparametric estimation</topic><topic>Nonparametric inference</topic><topic>Nonparametric regression</topic><topic>Polynomials</topic><topic>Probabilities</topic><topic>Probability and statistics</topic><topic>Regression analysis</topic><topic>Ridge regression</topic><topic>Sample size</topic><topic>Sample variance</topic><topic>Sciences and techniques of general use</topic><topic>Smoothing</topic><topic>Statistical methods</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Theory and Methods</topic><topic>Weight function</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seifert, Burkhardt</creatorcontrib><creatorcontrib>Gasser, Theo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 35</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seifert, Burkhardt</au><au>Gasser, Theo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-Sample Variance of Local Polynomials: Analysis and Solutions</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>1996-03-01</date><risdate>1996</risdate><volume>91</volume><issue>433</issue><spage>267</spage><epage>275</epage><pages>267-275</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>Fitting local polynomials in nonparametric regression has a number of advantages. The attractive theoretical features are in a partial contradiction to variance properties for random design and to practical experience over a broad range of situations. No upper bound can be given for the conditional variance. The unconditional variance is infinite when using optimal weights with compact support. Properties are better for Gaussian weights. We analyze local polynomials for finite sample size, both theoretically and numerically. It turns out that difficulties arise in sparse regions in the realization of the design, when the realization has locally a small variance and/or a skew empirical distribution. Two small-sample modifications of local polynomials are presented: local increase of bandwidth in sparse regions of the design, and local polynomial ridge regression. Both modifications combine a good finite-sample behavior with the asymptotic advantages of local polynomials.</abstract><cop>Alexandria, VA</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/01621459.1996.10476685</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 1996-03, Vol.91 (433), p.267-275
issn 0162-1459
1537-274X
language eng
recordid cdi_proquest_journals_1474333572
source Periodicals Index Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Data smoothing
Estimation bias
Estimators
Exact sciences and technology
Linear inference, regression
Linear regression
Mathematics
Minimax
Nonparametric estimation
Nonparametric inference
Nonparametric regression
Polynomials
Probabilities
Probability and statistics
Regression analysis
Ridge regression
Sample size
Sample variance
Sciences and techniques of general use
Smoothing
Statistical methods
Statistical variance
Statistics
Theory and Methods
Weight function
Weighting functions
title Finite-Sample Variance of Local Polynomials: Analysis and Solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-Sample%20Variance%20of%20Local%20Polynomials:%20Analysis%20and%20Solutions&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Seifert,%20Burkhardt&rft.date=1996-03-01&rft.volume=91&rft.issue=433&rft.spage=267&rft.epage=275&rft.pages=267-275&rft.issn=0162-1459&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1080/01621459.1996.10476685&rft_dat=%3Cjstor_proqu%3E2291404%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1474333572&rft_id=info:pmid/&rft_jstor_id=2291404&rfr_iscdi=true