Finite-Sample Variance of Local Polynomials: Analysis and Solutions
Fitting local polynomials in nonparametric regression has a number of advantages. The attractive theoretical features are in a partial contradiction to variance properties for random design and to practical experience over a broad range of situations. No upper bound can be given for the conditional...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 1996-03, Vol.91 (433), p.267-275 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 275 |
---|---|
container_issue | 433 |
container_start_page | 267 |
container_title | Journal of the American Statistical Association |
container_volume | 91 |
creator | Seifert, Burkhardt Gasser, Theo |
description | Fitting local polynomials in nonparametric regression has a number of advantages. The attractive theoretical features are in a partial contradiction to variance properties for random design and to practical experience over a broad range of situations. No upper bound can be given for the conditional variance. The unconditional variance is infinite when using optimal weights with compact support. Properties are better for Gaussian weights. We analyze local polynomials for finite sample size, both theoretically and numerically. It turns out that difficulties arise in sparse regions in the realization of the design, when the realization has locally a small variance and/or a skew empirical distribution. Two small-sample modifications of local polynomials are presented: local increase of bandwidth in sparse regions of the design, and local polynomial ridge regression. Both modifications combine a good finite-sample behavior with the asymptotic advantages of local polynomials. |
doi_str_mv | 10.1080/01621459.1996.10476685 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1474333572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2291404</jstor_id><sourcerecordid>2291404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-ca5e397bc69cf1e79890e011a2b63872552c697dc176e52b747a0efff574851c3</originalsourceid><addsrcrecordid>eNqFkFtrGzEQRkVpoK6Tv1CWJPRtHd0veTOmaQuGBJyUvglZlkBGu3KkNcH_PjK2SyiEzMvAzJmP4QDwDcEJghLeQMQxokxNkFK8jqjgXLJPYIQYES0W9O9nMNpD7Z76Ar6Wsoa1hJQjMLsLfRhcuzDdJrrmj8nB9NY1yTfzZE1sHlLc9akLJpbbZtqbuCuhNKZfNYsUt0NIfTkHZ76u3cWxj8HT3Y_H2a92fv_z92w6by0lfGitYY4osbRcWY-cUFJBBxEyeMmJFJgxXFdiZZHgjuGloMJA571ngkqGLBmD74fcTU7PW1cG3YViXYymd2lbNKmBUhBVwcv_wHXa5vp70VWHlExRVqGr9yBEBSWEMIErxQ-UzamU7Lze5NCZvNMI6r1-fdKv9_r1SX89vD7Gm1I9-ly1hvLvmkCmJHqDrcuQ8ttwTKDQGCtEIa3Y9ICF3qfcmZeU40oPZhdTPkWTDz56BU-7oeY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1474333572</pqid></control><display><type>article</type><title>Finite-Sample Variance of Local Polynomials: Analysis and Solutions</title><source>Periodicals Index Online</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Seifert, Burkhardt ; Gasser, Theo</creator><creatorcontrib>Seifert, Burkhardt ; Gasser, Theo</creatorcontrib><description>Fitting local polynomials in nonparametric regression has a number of advantages. The attractive theoretical features are in a partial contradiction to variance properties for random design and to practical experience over a broad range of situations. No upper bound can be given for the conditional variance. The unconditional variance is infinite when using optimal weights with compact support. Properties are better for Gaussian weights. We analyze local polynomials for finite sample size, both theoretically and numerically. It turns out that difficulties arise in sparse regions in the realization of the design, when the realization has locally a small variance and/or a skew empirical distribution. Two small-sample modifications of local polynomials are presented: local increase of bandwidth in sparse regions of the design, and local polynomial ridge regression. Both modifications combine a good finite-sample behavior with the asymptotic advantages of local polynomials.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.1996.10476685</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria, VA: Taylor & Francis Group</publisher><subject>Data smoothing ; Estimation bias ; Estimators ; Exact sciences and technology ; Linear inference, regression ; Linear regression ; Mathematics ; Minimax ; Nonparametric estimation ; Nonparametric inference ; Nonparametric regression ; Polynomials ; Probabilities ; Probability and statistics ; Regression analysis ; Ridge regression ; Sample size ; Sample variance ; Sciences and techniques of general use ; Smoothing ; Statistical methods ; Statistical variance ; Statistics ; Theory and Methods ; Weight function ; Weighting functions</subject><ispartof>Journal of the American Statistical Association, 1996-03, Vol.91 (433), p.267-275</ispartof><rights>Copyright Taylor & Francis Group, LLC 1996</rights><rights>Copyright 1996 American Statistical Association</rights><rights>1996 INIST-CNRS</rights><rights>Copyright American Statistical Association Mar 1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-ca5e397bc69cf1e79890e011a2b63872552c697dc176e52b747a0efff574851c3</citedby><cites>FETCH-LOGICAL-c436t-ca5e397bc69cf1e79890e011a2b63872552c697dc176e52b747a0efff574851c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2291404$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2291404$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27868,27923,27924,58016,58020,58249,58253</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3059815$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Seifert, Burkhardt</creatorcontrib><creatorcontrib>Gasser, Theo</creatorcontrib><title>Finite-Sample Variance of Local Polynomials: Analysis and Solutions</title><title>Journal of the American Statistical Association</title><description>Fitting local polynomials in nonparametric regression has a number of advantages. The attractive theoretical features are in a partial contradiction to variance properties for random design and to practical experience over a broad range of situations. No upper bound can be given for the conditional variance. The unconditional variance is infinite when using optimal weights with compact support. Properties are better for Gaussian weights. We analyze local polynomials for finite sample size, both theoretically and numerically. It turns out that difficulties arise in sparse regions in the realization of the design, when the realization has locally a small variance and/or a skew empirical distribution. Two small-sample modifications of local polynomials are presented: local increase of bandwidth in sparse regions of the design, and local polynomial ridge regression. Both modifications combine a good finite-sample behavior with the asymptotic advantages of local polynomials.</description><subject>Data smoothing</subject><subject>Estimation bias</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Linear inference, regression</subject><subject>Linear regression</subject><subject>Mathematics</subject><subject>Minimax</subject><subject>Nonparametric estimation</subject><subject>Nonparametric inference</subject><subject>Nonparametric regression</subject><subject>Polynomials</subject><subject>Probabilities</subject><subject>Probability and statistics</subject><subject>Regression analysis</subject><subject>Ridge regression</subject><subject>Sample size</subject><subject>Sample variance</subject><subject>Sciences and techniques of general use</subject><subject>Smoothing</subject><subject>Statistical methods</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Theory and Methods</subject><subject>Weight function</subject><subject>Weighting functions</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqFkFtrGzEQRkVpoK6Tv1CWJPRtHd0veTOmaQuGBJyUvglZlkBGu3KkNcH_PjK2SyiEzMvAzJmP4QDwDcEJghLeQMQxokxNkFK8jqjgXLJPYIQYES0W9O9nMNpD7Z76Ar6Wsoa1hJQjMLsLfRhcuzDdJrrmj8nB9NY1yTfzZE1sHlLc9akLJpbbZtqbuCuhNKZfNYsUt0NIfTkHZ76u3cWxj8HT3Y_H2a92fv_z92w6by0lfGitYY4osbRcWY-cUFJBBxEyeMmJFJgxXFdiZZHgjuGloMJA571ngkqGLBmD74fcTU7PW1cG3YViXYymd2lbNKmBUhBVwcv_wHXa5vp70VWHlExRVqGr9yBEBSWEMIErxQ-UzamU7Lze5NCZvNMI6r1-fdKv9_r1SX89vD7Gm1I9-ly1hvLvmkCmJHqDrcuQ8ttwTKDQGCtEIa3Y9ICF3qfcmZeU40oPZhdTPkWTDz56BU-7oeY</recordid><startdate>19960301</startdate><enddate>19960301</enddate><creator>Seifert, Burkhardt</creator><creator>Gasser, Theo</creator><general>Taylor & Francis Group</general><general>American Statistical Association</general><general>Taylor & Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JRZRW</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>19960301</creationdate><title>Finite-Sample Variance of Local Polynomials: Analysis and Solutions</title><author>Seifert, Burkhardt ; Gasser, Theo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-ca5e397bc69cf1e79890e011a2b63872552c697dc176e52b747a0efff574851c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Data smoothing</topic><topic>Estimation bias</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Linear inference, regression</topic><topic>Linear regression</topic><topic>Mathematics</topic><topic>Minimax</topic><topic>Nonparametric estimation</topic><topic>Nonparametric inference</topic><topic>Nonparametric regression</topic><topic>Polynomials</topic><topic>Probabilities</topic><topic>Probability and statistics</topic><topic>Regression analysis</topic><topic>Ridge regression</topic><topic>Sample size</topic><topic>Sample variance</topic><topic>Sciences and techniques of general use</topic><topic>Smoothing</topic><topic>Statistical methods</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Theory and Methods</topic><topic>Weight function</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seifert, Burkhardt</creatorcontrib><creatorcontrib>Gasser, Theo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 35</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seifert, Burkhardt</au><au>Gasser, Theo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-Sample Variance of Local Polynomials: Analysis and Solutions</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>1996-03-01</date><risdate>1996</risdate><volume>91</volume><issue>433</issue><spage>267</spage><epage>275</epage><pages>267-275</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>Fitting local polynomials in nonparametric regression has a number of advantages. The attractive theoretical features are in a partial contradiction to variance properties for random design and to practical experience over a broad range of situations. No upper bound can be given for the conditional variance. The unconditional variance is infinite when using optimal weights with compact support. Properties are better for Gaussian weights. We analyze local polynomials for finite sample size, both theoretically and numerically. It turns out that difficulties arise in sparse regions in the realization of the design, when the realization has locally a small variance and/or a skew empirical distribution. Two small-sample modifications of local polynomials are presented: local increase of bandwidth in sparse regions of the design, and local polynomial ridge regression. Both modifications combine a good finite-sample behavior with the asymptotic advantages of local polynomials.</abstract><cop>Alexandria, VA</cop><pub>Taylor & Francis Group</pub><doi>10.1080/01621459.1996.10476685</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-1459 |
ispartof | Journal of the American Statistical Association, 1996-03, Vol.91 (433), p.267-275 |
issn | 0162-1459 1537-274X |
language | eng |
recordid | cdi_proquest_journals_1474333572 |
source | Periodicals Index Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Data smoothing Estimation bias Estimators Exact sciences and technology Linear inference, regression Linear regression Mathematics Minimax Nonparametric estimation Nonparametric inference Nonparametric regression Polynomials Probabilities Probability and statistics Regression analysis Ridge regression Sample size Sample variance Sciences and techniques of general use Smoothing Statistical methods Statistical variance Statistics Theory and Methods Weight function Weighting functions |
title | Finite-Sample Variance of Local Polynomials: Analysis and Solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-Sample%20Variance%20of%20Local%20Polynomials:%20Analysis%20and%20Solutions&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Seifert,%20Burkhardt&rft.date=1996-03-01&rft.volume=91&rft.issue=433&rft.spage=267&rft.epage=275&rft.pages=267-275&rft.issn=0162-1459&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1080/01621459.1996.10476685&rft_dat=%3Cjstor_proqu%3E2291404%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1474333572&rft_id=info:pmid/&rft_jstor_id=2291404&rfr_iscdi=true |