Combining Scores in Multiple-Criteria Assessment Systems: The Impact of Combination Rule
Best practice in gifted and talented identification procedures involves making decisions on the basis of multiple measures. However, very little research has investigated the impact of different methods of combining multiple measures. This article examines the consequences of the conjunctive (“and”)...
Gespeichert in:
Veröffentlicht in: | The Gifted child quarterly 2014-01, Vol.58 (1), p.69-89 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 89 |
---|---|
container_issue | 1 |
container_start_page | 69 |
container_title | The Gifted child quarterly |
container_volume | 58 |
creator | McBee, Matthew T. Peters, Scott J. Waterman, Craig |
description | Best practice in gifted and talented identification procedures involves making decisions on the basis of multiple measures. However, very little research has investigated the impact of different methods of combining multiple measures. This article examines the consequences of the conjunctive (“and”), disjunctive/complementary (“or”), and compensatory (“mean”) models for combining scores from multiple assessments. It considers the impact of rule choice on the size of the student population, the ability heterogeneity of the identified students, and the psychometric performance of such systems. It also uses statistical simulation to examine the performance of the state of Georgia’s mandated and complex multiple-criteria assessment system. |
doi_str_mv | 10.1177/0016986213513794 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1471917021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1020284</ericid><sage_id>10.1177_0016986213513794</sage_id><sourcerecordid>3169382851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-4642171551865807a75ca4b7d00411a4223b4cdb4c94fe20e2b003a84091c30e3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKt3L8KC5-hMkt0kx7LULyoequclm6Ylpbtbk91D_70pKyKCh2EYnvl43yHkGuEOUcp7ACy0KhjyHLnU4oRMUHNBNQg8JZMjpkd-Ti5i3KZSaQYTosquqX3r2022tF1wMfNt9jrser_fOVoG37vgTTaL0cXYuLbPlofYuyZekrO12UV39Z2n5ONh_l4-0cXb43M5W1DLlOipKARDiXmOqsgVSCNza0QtV5B0oRGM8VrYVQot1o6BYzUAN0qARsvB8Sm5HffuQ_c5uNhX224IbTpZoZCoUULyPCUwdtnQxRjcutoH35hwqBCq43-qv_9JIzfjSDJof9rnLwgMkvTE6cij2bhfR__b9wXLHWuW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1471917021</pqid></control><display><type>article</type><title>Combining Scores in Multiple-Criteria Assessment Systems: The Impact of Combination Rule</title><source>Access via SAGE</source><creator>McBee, Matthew T. ; Peters, Scott J. ; Waterman, Craig</creator><creatorcontrib>McBee, Matthew T. ; Peters, Scott J. ; Waterman, Craig</creatorcontrib><description>Best practice in gifted and talented identification procedures involves making decisions on the basis of multiple measures. However, very little research has investigated the impact of different methods of combining multiple measures. This article examines the consequences of the conjunctive (“and”), disjunctive/complementary (“or”), and compensatory (“mean”) models for combining scores from multiple assessments. It considers the impact of rule choice on the size of the student population, the ability heterogeneity of the identified students, and the psychometric performance of such systems. It also uses statistical simulation to examine the performance of the state of Georgia’s mandated and complex multiple-criteria assessment system.</description><identifier>ISSN: 0016-9862</identifier><identifier>EISSN: 1934-9041</identifier><identifier>DOI: 10.1177/0016986213513794</identifier><identifier>CODEN: GICQAC</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Ability Identification ; Academic Achievement ; Academically Gifted ; Best Practices ; Cognitive Abilities Test ; Cognitive Ability ; Correlation ; Creativity ; Decision Making ; Educational tests & measurements ; Error of Measurement ; Evaluation Criteria ; Georgia ; Gifted children ; Iowa Tests of Basic Skills ; Motivation ; Psychological tests ; Reliability ; Simulation ; Stanford Achievement Tests ; Statistical Analysis ; Student Evaluation ; Student Motivation ; Students ; Testing Programs</subject><ispartof>The Gifted child quarterly, 2014-01, Vol.58 (1), p.69-89</ispartof><rights>2013 National Association for Gifted Children</rights><rights>Copyright SAGE PUBLICATIONS, INC. Jan 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c284t-4642171551865807a75ca4b7d00411a4223b4cdb4c94fe20e2b003a84091c30e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0016986213513794$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0016986213513794$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>315,782,786,21826,27931,27932,43628,43629</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1020284$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>McBee, Matthew T.</creatorcontrib><creatorcontrib>Peters, Scott J.</creatorcontrib><creatorcontrib>Waterman, Craig</creatorcontrib><title>Combining Scores in Multiple-Criteria Assessment Systems: The Impact of Combination Rule</title><title>The Gifted child quarterly</title><description>Best practice in gifted and talented identification procedures involves making decisions on the basis of multiple measures. However, very little research has investigated the impact of different methods of combining multiple measures. This article examines the consequences of the conjunctive (“and”), disjunctive/complementary (“or”), and compensatory (“mean”) models for combining scores from multiple assessments. It considers the impact of rule choice on the size of the student population, the ability heterogeneity of the identified students, and the psychometric performance of such systems. It also uses statistical simulation to examine the performance of the state of Georgia’s mandated and complex multiple-criteria assessment system.</description><subject>Ability Identification</subject><subject>Academic Achievement</subject><subject>Academically Gifted</subject><subject>Best Practices</subject><subject>Cognitive Abilities Test</subject><subject>Cognitive Ability</subject><subject>Correlation</subject><subject>Creativity</subject><subject>Decision Making</subject><subject>Educational tests & measurements</subject><subject>Error of Measurement</subject><subject>Evaluation Criteria</subject><subject>Georgia</subject><subject>Gifted children</subject><subject>Iowa Tests of Basic Skills</subject><subject>Motivation</subject><subject>Psychological tests</subject><subject>Reliability</subject><subject>Simulation</subject><subject>Stanford Achievement Tests</subject><subject>Statistical Analysis</subject><subject>Student Evaluation</subject><subject>Student Motivation</subject><subject>Students</subject><subject>Testing Programs</subject><issn>0016-9862</issn><issn>1934-9041</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKt3L8KC5-hMkt0kx7LULyoequclm6Ylpbtbk91D_70pKyKCh2EYnvl43yHkGuEOUcp7ACy0KhjyHLnU4oRMUHNBNQg8JZMjpkd-Ti5i3KZSaQYTosquqX3r2022tF1wMfNt9jrser_fOVoG37vgTTaL0cXYuLbPlofYuyZekrO12UV39Z2n5ONh_l4-0cXb43M5W1DLlOipKARDiXmOqsgVSCNza0QtV5B0oRGM8VrYVQot1o6BYzUAN0qARsvB8Sm5HffuQ_c5uNhX224IbTpZoZCoUULyPCUwdtnQxRjcutoH35hwqBCq43-qv_9JIzfjSDJof9rnLwgMkvTE6cij2bhfR__b9wXLHWuW</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>McBee, Matthew T.</creator><creator>Peters, Scott J.</creator><creator>Waterman, Craig</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope></search><sort><creationdate>201401</creationdate><title>Combining Scores in Multiple-Criteria Assessment Systems</title><author>McBee, Matthew T. ; Peters, Scott J. ; Waterman, Craig</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-4642171551865807a75ca4b7d00411a4223b4cdb4c94fe20e2b003a84091c30e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Ability Identification</topic><topic>Academic Achievement</topic><topic>Academically Gifted</topic><topic>Best Practices</topic><topic>Cognitive Abilities Test</topic><topic>Cognitive Ability</topic><topic>Correlation</topic><topic>Creativity</topic><topic>Decision Making</topic><topic>Educational tests & measurements</topic><topic>Error of Measurement</topic><topic>Evaluation Criteria</topic><topic>Georgia</topic><topic>Gifted children</topic><topic>Iowa Tests of Basic Skills</topic><topic>Motivation</topic><topic>Psychological tests</topic><topic>Reliability</topic><topic>Simulation</topic><topic>Stanford Achievement Tests</topic><topic>Statistical Analysis</topic><topic>Student Evaluation</topic><topic>Student Motivation</topic><topic>Students</topic><topic>Testing Programs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McBee, Matthew T.</creatorcontrib><creatorcontrib>Peters, Scott J.</creatorcontrib><creatorcontrib>Waterman, Craig</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>Docstoc</collection><jtitle>The Gifted child quarterly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McBee, Matthew T.</au><au>Peters, Scott J.</au><au>Waterman, Craig</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1020284</ericid><atitle>Combining Scores in Multiple-Criteria Assessment Systems: The Impact of Combination Rule</atitle><jtitle>The Gifted child quarterly</jtitle><date>2014-01</date><risdate>2014</risdate><volume>58</volume><issue>1</issue><spage>69</spage><epage>89</epage><pages>69-89</pages><issn>0016-9862</issn><eissn>1934-9041</eissn><coden>GICQAC</coden><abstract>Best practice in gifted and talented identification procedures involves making decisions on the basis of multiple measures. However, very little research has investigated the impact of different methods of combining multiple measures. This article examines the consequences of the conjunctive (“and”), disjunctive/complementary (“or”), and compensatory (“mean”) models for combining scores from multiple assessments. It considers the impact of rule choice on the size of the student population, the ability heterogeneity of the identified students, and the psychometric performance of such systems. It also uses statistical simulation to examine the performance of the state of Georgia’s mandated and complex multiple-criteria assessment system.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/0016986213513794</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-9862 |
ispartof | The Gifted child quarterly, 2014-01, Vol.58 (1), p.69-89 |
issn | 0016-9862 1934-9041 |
language | eng |
recordid | cdi_proquest_journals_1471917021 |
source | Access via SAGE |
subjects | Ability Identification Academic Achievement Academically Gifted Best Practices Cognitive Abilities Test Cognitive Ability Correlation Creativity Decision Making Educational tests & measurements Error of Measurement Evaluation Criteria Georgia Gifted children Iowa Tests of Basic Skills Motivation Psychological tests Reliability Simulation Stanford Achievement Tests Statistical Analysis Student Evaluation Student Motivation Students Testing Programs |
title | Combining Scores in Multiple-Criteria Assessment Systems: The Impact of Combination Rule |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T16%3A33%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20Scores%20in%20Multiple-Criteria%20Assessment%20Systems:%20The%20Impact%20of%20Combination%20Rule&rft.jtitle=The%20Gifted%20child%20quarterly&rft.au=McBee,%20Matthew%20T.&rft.date=2014-01&rft.volume=58&rft.issue=1&rft.spage=69&rft.epage=89&rft.pages=69-89&rft.issn=0016-9862&rft.eissn=1934-9041&rft.coden=GICQAC&rft_id=info:doi/10.1177/0016986213513794&rft_dat=%3Cproquest_cross%3E3169382851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1471917021&rft_id=info:pmid/&rft_ericid=EJ1020284&rft_sage_id=10.1177_0016986213513794&rfr_iscdi=true |