A Scalable 3D Heterogeneous Multicore with an Inductive ThruChip Interface

The authors developed a scalable heterogeneous multicore processor. 3D heterogeneous chip stacking of a general-purpose CPU and reconfigurable multicore accelerators enables various trade-offs between performance and energy consumption. The stacked chips interconnect through a scalable 3D network on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE MICRO 2013-11, Vol.33 (6), p.6-15
Hauptverfasser: Miura, Noriyuki, Koizumi, Yusuke, Take, Yasuhiro, Matsutani, Hiroki, Kuroda, Tadahiro, Amano, Hideharu, Sakamoto, Ryuichi, Namiki, Mitaro, Usami, Kimiyoshi, Kondo, Masaaki, Nakamura, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 6
container_start_page 6
container_title IEEE MICRO
container_volume 33
creator Miura, Noriyuki
Koizumi, Yusuke
Take, Yasuhiro
Matsutani, Hiroki
Kuroda, Tadahiro
Amano, Hideharu
Sakamoto, Ryuichi
Namiki, Mitaro
Usami, Kimiyoshi
Kondo, Masaaki
Nakamura, Hiroshi
description The authors developed a scalable heterogeneous multicore processor. 3D heterogeneous chip stacking of a general-purpose CPU and reconfigurable multicore accelerators enables various trade-offs between performance and energy consumption. The stacked chips interconnect through a scalable 3D network on a chip (NoC). By simply changing the number of stacked accelerator chips, processor parallelism can be widely scaled. No design change is needed, and hence, no additional nonrecurring engineering (NRE) cost is required. An inductive-coupling ThruChip Interface (TCI) is applied to stacked-chip communications, forming a low-cost and robust high-speed 3D NoC. The authors developed a prototype system called Cube-1 with 65-nm CMOS test chips, and confirmed successful system operations, including 10 hours of continuous Linux OS operation. Simple filters and a streaming application were implemented on Cube-1 and performance acceleration up to about three times was achieved.
doi_str_mv 10.1109/MM.2013.112
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1471915647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6684194</ieee_id><sourcerecordid>1494357771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-9656273c7c0553b611d4e07aee52e0078a129bd5488af5e1e6dcc989e42bcd783</originalsourceid><addsrcrecordid>eNpd0DtPwzAQAGALgUQpTIwslliQUIrPjzgZUXm0qBEDZY4c50JTpUmxExD_HpciBqbTnb576Ag5BzYBYOlNlk04AxESfkBGkAodSZDikIwY1zwCLfgxOfF-zRhTnCUj8nRLX6xpTNEgFXd0hj267g1b7AZPs6Hpa9s5pJ91v6KmpfO2HGxffyBdrtwwXdXbUAotlbF4So4q03g8-41j8vpwv5zOosXz43x6u4isANlHaaxiroXVliklihiglMi0QVQcGdOJAZ4WpZJJYiqFgHFpbZqkKHlhS52IMbnaz9267n1A3-eb2ltsGvNzdQ4ylUJprSHQy3903Q2uDdcFpSEFFUsd1PVeWdd577DKt67eGPeVA8t3f82zLN_9NSQ86Iu9rhHxT8ZxIiHs_QYEwXEf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1471915647</pqid></control><display><type>article</type><title>A Scalable 3D Heterogeneous Multicore with an Inductive ThruChip Interface</title><source>IEEE Electronic Library (IEL)</source><creator>Miura, Noriyuki ; Koizumi, Yusuke ; Take, Yasuhiro ; Matsutani, Hiroki ; Kuroda, Tadahiro ; Amano, Hideharu ; Sakamoto, Ryuichi ; Namiki, Mitaro ; Usami, Kimiyoshi ; Kondo, Masaaki ; Nakamura, Hiroshi</creator><creatorcontrib>Miura, Noriyuki ; Koizumi, Yusuke ; Take, Yasuhiro ; Matsutani, Hiroki ; Kuroda, Tadahiro ; Amano, Hideharu ; Sakamoto, Ryuichi ; Namiki, Mitaro ; Usami, Kimiyoshi ; Kondo, Masaaki ; Nakamura, Hiroshi</creatorcontrib><description>The authors developed a scalable heterogeneous multicore processor. 3D heterogeneous chip stacking of a general-purpose CPU and reconfigurable multicore accelerators enables various trade-offs between performance and energy consumption. The stacked chips interconnect through a scalable 3D network on a chip (NoC). By simply changing the number of stacked accelerator chips, processor parallelism can be widely scaled. No design change is needed, and hence, no additional nonrecurring engineering (NRE) cost is required. An inductive-coupling ThruChip Interface (TCI) is applied to stacked-chip communications, forming a low-cost and robust high-speed 3D NoC. The authors developed a prototype system called Cube-1 with 65-nm CMOS test chips, and confirmed successful system operations, including 10 hours of continuous Linux OS operation. Simple filters and a streaming application were implemented on Cube-1 and performance acceleration up to about three times was achieved.</description><identifier>ISSN: 0272-1732</identifier><identifier>EISSN: 1937-4143</identifier><identifier>DOI: 10.1109/MM.2013.112</identifier><identifier>CODEN: IEMIDZ</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Acceleration ; Central processing units ; CMOS ; Communication ; CPUs ; heterogeneous multicore system ; inductive coupling through chip interface ; Interconnect ; Multicore processing ; Network-on-chip ; Scalability ; Three dimensional displays</subject><ispartof>IEEE MICRO, 2013-11, Vol.33 (6), p.6-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov/Dec 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-9656273c7c0553b611d4e07aee52e0078a129bd5488af5e1e6dcc989e42bcd783</citedby><cites>FETCH-LOGICAL-c314t-9656273c7c0553b611d4e07aee52e0078a129bd5488af5e1e6dcc989e42bcd783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6684194$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6684194$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Miura, Noriyuki</creatorcontrib><creatorcontrib>Koizumi, Yusuke</creatorcontrib><creatorcontrib>Take, Yasuhiro</creatorcontrib><creatorcontrib>Matsutani, Hiroki</creatorcontrib><creatorcontrib>Kuroda, Tadahiro</creatorcontrib><creatorcontrib>Amano, Hideharu</creatorcontrib><creatorcontrib>Sakamoto, Ryuichi</creatorcontrib><creatorcontrib>Namiki, Mitaro</creatorcontrib><creatorcontrib>Usami, Kimiyoshi</creatorcontrib><creatorcontrib>Kondo, Masaaki</creatorcontrib><creatorcontrib>Nakamura, Hiroshi</creatorcontrib><title>A Scalable 3D Heterogeneous Multicore with an Inductive ThruChip Interface</title><title>IEEE MICRO</title><addtitle>MM</addtitle><description>The authors developed a scalable heterogeneous multicore processor. 3D heterogeneous chip stacking of a general-purpose CPU and reconfigurable multicore accelerators enables various trade-offs between performance and energy consumption. The stacked chips interconnect through a scalable 3D network on a chip (NoC). By simply changing the number of stacked accelerator chips, processor parallelism can be widely scaled. No design change is needed, and hence, no additional nonrecurring engineering (NRE) cost is required. An inductive-coupling ThruChip Interface (TCI) is applied to stacked-chip communications, forming a low-cost and robust high-speed 3D NoC. The authors developed a prototype system called Cube-1 with 65-nm CMOS test chips, and confirmed successful system operations, including 10 hours of continuous Linux OS operation. Simple filters and a streaming application were implemented on Cube-1 and performance acceleration up to about three times was achieved.</description><subject>Acceleration</subject><subject>Central processing units</subject><subject>CMOS</subject><subject>Communication</subject><subject>CPUs</subject><subject>heterogeneous multicore system</subject><subject>inductive coupling through chip interface</subject><subject>Interconnect</subject><subject>Multicore processing</subject><subject>Network-on-chip</subject><subject>Scalability</subject><subject>Three dimensional displays</subject><issn>0272-1732</issn><issn>1937-4143</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0DtPwzAQAGALgUQpTIwslliQUIrPjzgZUXm0qBEDZY4c50JTpUmxExD_HpciBqbTnb576Ag5BzYBYOlNlk04AxESfkBGkAodSZDikIwY1zwCLfgxOfF-zRhTnCUj8nRLX6xpTNEgFXd0hj267g1b7AZPs6Hpa9s5pJ91v6KmpfO2HGxffyBdrtwwXdXbUAotlbF4So4q03g8-41j8vpwv5zOosXz43x6u4isANlHaaxiroXVliklihiglMi0QVQcGdOJAZ4WpZJJYiqFgHFpbZqkKHlhS52IMbnaz9267n1A3-eb2ltsGvNzdQ4ylUJprSHQy3903Q2uDdcFpSEFFUsd1PVeWdd577DKt67eGPeVA8t3f82zLN_9NSQ86Iu9rhHxT8ZxIiHs_QYEwXEf</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Miura, Noriyuki</creator><creator>Koizumi, Yusuke</creator><creator>Take, Yasuhiro</creator><creator>Matsutani, Hiroki</creator><creator>Kuroda, Tadahiro</creator><creator>Amano, Hideharu</creator><creator>Sakamoto, Ryuichi</creator><creator>Namiki, Mitaro</creator><creator>Usami, Kimiyoshi</creator><creator>Kondo, Masaaki</creator><creator>Nakamura, Hiroshi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201311</creationdate><title>A Scalable 3D Heterogeneous Multicore with an Inductive ThruChip Interface</title><author>Miura, Noriyuki ; Koizumi, Yusuke ; Take, Yasuhiro ; Matsutani, Hiroki ; Kuroda, Tadahiro ; Amano, Hideharu ; Sakamoto, Ryuichi ; Namiki, Mitaro ; Usami, Kimiyoshi ; Kondo, Masaaki ; Nakamura, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-9656273c7c0553b611d4e07aee52e0078a129bd5488af5e1e6dcc989e42bcd783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acceleration</topic><topic>Central processing units</topic><topic>CMOS</topic><topic>Communication</topic><topic>CPUs</topic><topic>heterogeneous multicore system</topic><topic>inductive coupling through chip interface</topic><topic>Interconnect</topic><topic>Multicore processing</topic><topic>Network-on-chip</topic><topic>Scalability</topic><topic>Three dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miura, Noriyuki</creatorcontrib><creatorcontrib>Koizumi, Yusuke</creatorcontrib><creatorcontrib>Take, Yasuhiro</creatorcontrib><creatorcontrib>Matsutani, Hiroki</creatorcontrib><creatorcontrib>Kuroda, Tadahiro</creatorcontrib><creatorcontrib>Amano, Hideharu</creatorcontrib><creatorcontrib>Sakamoto, Ryuichi</creatorcontrib><creatorcontrib>Namiki, Mitaro</creatorcontrib><creatorcontrib>Usami, Kimiyoshi</creatorcontrib><creatorcontrib>Kondo, Masaaki</creatorcontrib><creatorcontrib>Nakamura, Hiroshi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE MICRO</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Miura, Noriyuki</au><au>Koizumi, Yusuke</au><au>Take, Yasuhiro</au><au>Matsutani, Hiroki</au><au>Kuroda, Tadahiro</au><au>Amano, Hideharu</au><au>Sakamoto, Ryuichi</au><au>Namiki, Mitaro</au><au>Usami, Kimiyoshi</au><au>Kondo, Masaaki</au><au>Nakamura, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Scalable 3D Heterogeneous Multicore with an Inductive ThruChip Interface</atitle><jtitle>IEEE MICRO</jtitle><stitle>MM</stitle><date>2013-11</date><risdate>2013</risdate><volume>33</volume><issue>6</issue><spage>6</spage><epage>15</epage><pages>6-15</pages><issn>0272-1732</issn><eissn>1937-4143</eissn><coden>IEMIDZ</coden><abstract>The authors developed a scalable heterogeneous multicore processor. 3D heterogeneous chip stacking of a general-purpose CPU and reconfigurable multicore accelerators enables various trade-offs between performance and energy consumption. The stacked chips interconnect through a scalable 3D network on a chip (NoC). By simply changing the number of stacked accelerator chips, processor parallelism can be widely scaled. No design change is needed, and hence, no additional nonrecurring engineering (NRE) cost is required. An inductive-coupling ThruChip Interface (TCI) is applied to stacked-chip communications, forming a low-cost and robust high-speed 3D NoC. The authors developed a prototype system called Cube-1 with 65-nm CMOS test chips, and confirmed successful system operations, including 10 hours of continuous Linux OS operation. Simple filters and a streaming application were implemented on Cube-1 and performance acceleration up to about three times was achieved.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/MM.2013.112</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0272-1732
ispartof IEEE MICRO, 2013-11, Vol.33 (6), p.6-15
issn 0272-1732
1937-4143
language eng
recordid cdi_proquest_journals_1471915647
source IEEE Electronic Library (IEL)
subjects Acceleration
Central processing units
CMOS
Communication
CPUs
heterogeneous multicore system
inductive coupling through chip interface
Interconnect
Multicore processing
Network-on-chip
Scalability
Three dimensional displays
title A Scalable 3D Heterogeneous Multicore with an Inductive ThruChip Interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A01%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Scalable%203D%20Heterogeneous%20Multicore%20with%20an%20Inductive%20ThruChip%20Interface&rft.jtitle=IEEE%20MICRO&rft.au=Miura,%20Noriyuki&rft.date=2013-11&rft.volume=33&rft.issue=6&rft.spage=6&rft.epage=15&rft.pages=6-15&rft.issn=0272-1732&rft.eissn=1937-4143&rft.coden=IEMIDZ&rft_id=info:doi/10.1109/MM.2013.112&rft_dat=%3Cproquest_RIE%3E1494357771%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1471915647&rft_id=info:pmid/&rft_ieee_id=6684194&rfr_iscdi=true