Treatment of Boundary Conditions in One-Dimensional Wavelet-Galerkin Method
One of the main problems of the Wavelet-Galerkin Method is the treatment of boundary conditions. To deal with this difficulty, the boundaries of wavelet series expansion are assumed to be the analytic boundaries of the problem. The boundary condition equations are replaced by end equations in the Ga...
Gespeichert in:
Veröffentlicht in: | JSME International Journal Series A Solid Mechanics and Material Engineering 1997/10/15, Vol.40(4), pp.382-388 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 388 |
---|---|
container_issue | 4 |
container_start_page | 382 |
container_title | JSME International Journal Series A Solid Mechanics and Material Engineering |
container_volume | 40 |
creator | LU, Dianfeng OHYOSHI, Tadashi MIURA, Kimihisa |
description | One of the main problems of the Wavelet-Galerkin Method is the treatment of boundary conditions. To deal with this difficulty, the boundaries of wavelet series expansion are assumed to be the analytic boundaries of the problem. The boundary condition equations are replaced by end equations in the Galerkin system. The manipulation discussed here enables us to use classical wavelets and to tackle the problem more simply. However, we find that the end equations are a necessary part of the Galerkin equation system within the boundaries. To maintain the integrity of the system, the boundaries of wavelet series expansion are shifted until the end equations do not depend on any expansion coefficients ck of φ(2jx-k)that affect the solution within the real boundaries. Therefore replacing the end equations gives a good result in comparison to the exact solution. |
doi_str_mv | 10.1299/jsmea.40.382 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1467459018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154025941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-c82360859097062b9dabaa57a804747e50c2d9def2a2bdb5ece341786dd629803</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRSMEEhWw4wMiwZIUvxLbSyhPAWIDYmlN7AlNSZNiu0j8PaapuvFYnjNH45tlp5RMKdP6chGWCFNBplyxvWxCuZBFySu-v7mLQmrKDrOTENqaECaU4JRMsqc3jxCX2Md8aPLrYd078L_5bOhdG9uhD3nb5689FjdtgkJ6gS7_gB_sMBb30KH_SsALxvngjrODBrqAJ9t6lL3f3b7NHorn1_vH2dVzYUuuYmEV4xVRpSZakorV2kENUEpQREghsSSWOe2wYcBqV5dokQsqVeVcxbQi_Cg7G70rP3yvMUSzGNY-LRYMFZUUyUxVoi5GyvohBI-NWfl2mT5nKDH_iZlNYkYQkxJL-PlWCsFC13jobRt2M4yUim6w2xFbhAifuOuDj63tcHRSreW_V4xH0u_6dg7eYM__AJvUg-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1467459018</pqid></control><display><type>article</type><title>Treatment of Boundary Conditions in One-Dimensional Wavelet-Galerkin Method</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>LU, Dianfeng ; OHYOSHI, Tadashi ; MIURA, Kimihisa</creator><creatorcontrib>LU, Dianfeng ; OHYOSHI, Tadashi ; MIURA, Kimihisa</creatorcontrib><description>One of the main problems of the Wavelet-Galerkin Method is the treatment of boundary conditions. To deal with this difficulty, the boundaries of wavelet series expansion are assumed to be the analytic boundaries of the problem. The boundary condition equations are replaced by end equations in the Galerkin system. The manipulation discussed here enables us to use classical wavelets and to tackle the problem more simply. However, we find that the end equations are a necessary part of the Galerkin equation system within the boundaries. To maintain the integrity of the system, the boundaries of wavelet series expansion are shifted until the end equations do not depend on any expansion coefficients ck of φ(2jx-k)that affect the solution within the real boundaries. Therefore replacing the end equations gives a good result in comparison to the exact solution.</description><identifier>ISSN: 1344-7912</identifier><identifier>ISSN: 1340-8046</identifier><identifier>EISSN: 1347-5363</identifier><identifier>DOI: 10.1299/jsmea.40.382</identifier><language>eng</language><publisher>Tokyo: The Japan Society of Mechanical Engineers</publisher><subject>Boundary Condition ; Computational Mechanics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Linear Differential Equation ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Vibrations and mechanical waves ; Wavelet-Galerkin Method</subject><ispartof>JSME International Journal Series A Solid Mechanics and Material Engineering, 1997/10/15, Vol.40(4), pp.382-388</ispartof><rights>The Japan Society of Mechanical Engineers</rights><rights>1998 INIST-CNRS</rights><rights>Copyright Japan Science and Technology Agency 1997</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-c82360859097062b9dabaa57a804747e50c2d9def2a2bdb5ece341786dd629803</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2058182$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LU, Dianfeng</creatorcontrib><creatorcontrib>OHYOSHI, Tadashi</creatorcontrib><creatorcontrib>MIURA, Kimihisa</creatorcontrib><title>Treatment of Boundary Conditions in One-Dimensional Wavelet-Galerkin Method</title><title>JSME International Journal Series A Solid Mechanics and Material Engineering</title><description>One of the main problems of the Wavelet-Galerkin Method is the treatment of boundary conditions. To deal with this difficulty, the boundaries of wavelet series expansion are assumed to be the analytic boundaries of the problem. The boundary condition equations are replaced by end equations in the Galerkin system. The manipulation discussed here enables us to use classical wavelets and to tackle the problem more simply. However, we find that the end equations are a necessary part of the Galerkin equation system within the boundaries. To maintain the integrity of the system, the boundaries of wavelet series expansion are shifted until the end equations do not depend on any expansion coefficients ck of φ(2jx-k)that affect the solution within the real boundaries. Therefore replacing the end equations gives a good result in comparison to the exact solution.</description><subject>Boundary Condition</subject><subject>Computational Mechanics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Linear Differential Equation</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Vibrations and mechanical waves</subject><subject>Wavelet-Galerkin Method</subject><issn>1344-7912</issn><issn>1340-8046</issn><issn>1347-5363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRSMEEhWw4wMiwZIUvxLbSyhPAWIDYmlN7AlNSZNiu0j8PaapuvFYnjNH45tlp5RMKdP6chGWCFNBplyxvWxCuZBFySu-v7mLQmrKDrOTENqaECaU4JRMsqc3jxCX2Md8aPLrYd078L_5bOhdG9uhD3nb5689FjdtgkJ6gS7_gB_sMBb30KH_SsALxvngjrODBrqAJ9t6lL3f3b7NHorn1_vH2dVzYUuuYmEV4xVRpSZakorV2kENUEpQREghsSSWOe2wYcBqV5dokQsqVeVcxbQi_Cg7G70rP3yvMUSzGNY-LRYMFZUUyUxVoi5GyvohBI-NWfl2mT5nKDH_iZlNYkYQkxJL-PlWCsFC13jobRt2M4yUim6w2xFbhAifuOuDj63tcHRSreW_V4xH0u_6dg7eYM__AJvUg-Q</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>LU, Dianfeng</creator><creator>OHYOSHI, Tadashi</creator><creator>MIURA, Kimihisa</creator><general>The Japan Society of Mechanical Engineers</general><general>Japan Society of Mechanical Engineers</general><general>Japan Science and Technology Agency</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>1997</creationdate><title>Treatment of Boundary Conditions in One-Dimensional Wavelet-Galerkin Method</title><author>LU, Dianfeng ; OHYOSHI, Tadashi ; MIURA, Kimihisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-c82360859097062b9dabaa57a804747e50c2d9def2a2bdb5ece341786dd629803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Boundary Condition</topic><topic>Computational Mechanics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Linear Differential Equation</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Vibrations and mechanical waves</topic><topic>Wavelet-Galerkin Method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LU, Dianfeng</creatorcontrib><creatorcontrib>OHYOSHI, Tadashi</creatorcontrib><creatorcontrib>MIURA, Kimihisa</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>JSME International Journal Series A Solid Mechanics and Material Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LU, Dianfeng</au><au>OHYOSHI, Tadashi</au><au>MIURA, Kimihisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Treatment of Boundary Conditions in One-Dimensional Wavelet-Galerkin Method</atitle><jtitle>JSME International Journal Series A Solid Mechanics and Material Engineering</jtitle><date>1997</date><risdate>1997</risdate><volume>40</volume><issue>4</issue><spage>382</spage><epage>388</epage><pages>382-388</pages><issn>1344-7912</issn><issn>1340-8046</issn><eissn>1347-5363</eissn><abstract>One of the main problems of the Wavelet-Galerkin Method is the treatment of boundary conditions. To deal with this difficulty, the boundaries of wavelet series expansion are assumed to be the analytic boundaries of the problem. The boundary condition equations are replaced by end equations in the Galerkin system. The manipulation discussed here enables us to use classical wavelets and to tackle the problem more simply. However, we find that the end equations are a necessary part of the Galerkin equation system within the boundaries. To maintain the integrity of the system, the boundaries of wavelet series expansion are shifted until the end equations do not depend on any expansion coefficients ck of φ(2jx-k)that affect the solution within the real boundaries. Therefore replacing the end equations gives a good result in comparison to the exact solution.</abstract><cop>Tokyo</cop><pub>The Japan Society of Mechanical Engineers</pub><doi>10.1299/jsmea.40.382</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1344-7912 |
ispartof | JSME International Journal Series A Solid Mechanics and Material Engineering, 1997/10/15, Vol.40(4), pp.382-388 |
issn | 1344-7912 1340-8046 1347-5363 |
language | eng |
recordid | cdi_proquest_journals_1467459018 |
source | J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Boundary Condition Computational Mechanics Exact sciences and technology Fundamental areas of phenomenology (including applications) Linear Differential Equation Physics Solid mechanics Structural and continuum mechanics Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) Vibrations and mechanical waves Wavelet-Galerkin Method |
title | Treatment of Boundary Conditions in One-Dimensional Wavelet-Galerkin Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Treatment%20of%20Boundary%20Conditions%20in%20One-Dimensional%20Wavelet-Galerkin%20Method&rft.jtitle=JSME%20International%20Journal%20Series%20A%20Solid%20Mechanics%20and%20Material%20Engineering&rft.au=LU,%20Dianfeng&rft.date=1997&rft.volume=40&rft.issue=4&rft.spage=382&rft.epage=388&rft.pages=382-388&rft.issn=1344-7912&rft.eissn=1347-5363&rft_id=info:doi/10.1299/jsmea.40.382&rft_dat=%3Cproquest_cross%3E3154025941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1467459018&rft_id=info:pmid/&rfr_iscdi=true |