Treatment of Boundary Conditions in One-Dimensional Wavelet-Galerkin Method

One of the main problems of the Wavelet-Galerkin Method is the treatment of boundary conditions. To deal with this difficulty, the boundaries of wavelet series expansion are assumed to be the analytic boundaries of the problem. The boundary condition equations are replaced by end equations in the Ga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JSME International Journal Series A Solid Mechanics and Material Engineering 1997/10/15, Vol.40(4), pp.382-388
Hauptverfasser: LU, Dianfeng, OHYOSHI, Tadashi, MIURA, Kimihisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 388
container_issue 4
container_start_page 382
container_title JSME International Journal Series A Solid Mechanics and Material Engineering
container_volume 40
creator LU, Dianfeng
OHYOSHI, Tadashi
MIURA, Kimihisa
description One of the main problems of the Wavelet-Galerkin Method is the treatment of boundary conditions. To deal with this difficulty, the boundaries of wavelet series expansion are assumed to be the analytic boundaries of the problem. The boundary condition equations are replaced by end equations in the Galerkin system. The manipulation discussed here enables us to use classical wavelets and to tackle the problem more simply. However, we find that the end equations are a necessary part of the Galerkin equation system within the boundaries. To maintain the integrity of the system, the boundaries of wavelet series expansion are shifted until the end equations do not depend on any expansion coefficients ck of φ(2jx-k)that affect the solution within the real boundaries. Therefore replacing the end equations gives a good result in comparison to the exact solution.
doi_str_mv 10.1299/jsmea.40.382
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1467459018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154025941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-c82360859097062b9dabaa57a804747e50c2d9def2a2bdb5ece341786dd629803</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRSMEEhWw4wMiwZIUvxLbSyhPAWIDYmlN7AlNSZNiu0j8PaapuvFYnjNH45tlp5RMKdP6chGWCFNBplyxvWxCuZBFySu-v7mLQmrKDrOTENqaECaU4JRMsqc3jxCX2Md8aPLrYd078L_5bOhdG9uhD3nb5689FjdtgkJ6gS7_gB_sMBb30KH_SsALxvngjrODBrqAJ9t6lL3f3b7NHorn1_vH2dVzYUuuYmEV4xVRpSZakorV2kENUEpQREghsSSWOe2wYcBqV5dokQsqVeVcxbQi_Cg7G70rP3yvMUSzGNY-LRYMFZUUyUxVoi5GyvohBI-NWfl2mT5nKDH_iZlNYkYQkxJL-PlWCsFC13jobRt2M4yUim6w2xFbhAifuOuDj63tcHRSreW_V4xH0u_6dg7eYM__AJvUg-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1467459018</pqid></control><display><type>article</type><title>Treatment of Boundary Conditions in One-Dimensional Wavelet-Galerkin Method</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>LU, Dianfeng ; OHYOSHI, Tadashi ; MIURA, Kimihisa</creator><creatorcontrib>LU, Dianfeng ; OHYOSHI, Tadashi ; MIURA, Kimihisa</creatorcontrib><description>One of the main problems of the Wavelet-Galerkin Method is the treatment of boundary conditions. To deal with this difficulty, the boundaries of wavelet series expansion are assumed to be the analytic boundaries of the problem. The boundary condition equations are replaced by end equations in the Galerkin system. The manipulation discussed here enables us to use classical wavelets and to tackle the problem more simply. However, we find that the end equations are a necessary part of the Galerkin equation system within the boundaries. To maintain the integrity of the system, the boundaries of wavelet series expansion are shifted until the end equations do not depend on any expansion coefficients ck of φ(2jx-k)that affect the solution within the real boundaries. Therefore replacing the end equations gives a good result in comparison to the exact solution.</description><identifier>ISSN: 1344-7912</identifier><identifier>ISSN: 1340-8046</identifier><identifier>EISSN: 1347-5363</identifier><identifier>DOI: 10.1299/jsmea.40.382</identifier><language>eng</language><publisher>Tokyo: The Japan Society of Mechanical Engineers</publisher><subject>Boundary Condition ; Computational Mechanics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Linear Differential Equation ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Vibrations and mechanical waves ; Wavelet-Galerkin Method</subject><ispartof>JSME International Journal Series A Solid Mechanics and Material Engineering, 1997/10/15, Vol.40(4), pp.382-388</ispartof><rights>The Japan Society of Mechanical Engineers</rights><rights>1998 INIST-CNRS</rights><rights>Copyright Japan Science and Technology Agency 1997</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-c82360859097062b9dabaa57a804747e50c2d9def2a2bdb5ece341786dd629803</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2058182$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LU, Dianfeng</creatorcontrib><creatorcontrib>OHYOSHI, Tadashi</creatorcontrib><creatorcontrib>MIURA, Kimihisa</creatorcontrib><title>Treatment of Boundary Conditions in One-Dimensional Wavelet-Galerkin Method</title><title>JSME International Journal Series A Solid Mechanics and Material Engineering</title><description>One of the main problems of the Wavelet-Galerkin Method is the treatment of boundary conditions. To deal with this difficulty, the boundaries of wavelet series expansion are assumed to be the analytic boundaries of the problem. The boundary condition equations are replaced by end equations in the Galerkin system. The manipulation discussed here enables us to use classical wavelets and to tackle the problem more simply. However, we find that the end equations are a necessary part of the Galerkin equation system within the boundaries. To maintain the integrity of the system, the boundaries of wavelet series expansion are shifted until the end equations do not depend on any expansion coefficients ck of φ(2jx-k)that affect the solution within the real boundaries. Therefore replacing the end equations gives a good result in comparison to the exact solution.</description><subject>Boundary Condition</subject><subject>Computational Mechanics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Linear Differential Equation</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Vibrations and mechanical waves</subject><subject>Wavelet-Galerkin Method</subject><issn>1344-7912</issn><issn>1340-8046</issn><issn>1347-5363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRSMEEhWw4wMiwZIUvxLbSyhPAWIDYmlN7AlNSZNiu0j8PaapuvFYnjNH45tlp5RMKdP6chGWCFNBplyxvWxCuZBFySu-v7mLQmrKDrOTENqaECaU4JRMsqc3jxCX2Md8aPLrYd078L_5bOhdG9uhD3nb5689FjdtgkJ6gS7_gB_sMBb30KH_SsALxvngjrODBrqAJ9t6lL3f3b7NHorn1_vH2dVzYUuuYmEV4xVRpSZakorV2kENUEpQREghsSSWOe2wYcBqV5dokQsqVeVcxbQi_Cg7G70rP3yvMUSzGNY-LRYMFZUUyUxVoi5GyvohBI-NWfl2mT5nKDH_iZlNYkYQkxJL-PlWCsFC13jobRt2M4yUim6w2xFbhAifuOuDj63tcHRSreW_V4xH0u_6dg7eYM__AJvUg-Q</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>LU, Dianfeng</creator><creator>OHYOSHI, Tadashi</creator><creator>MIURA, Kimihisa</creator><general>The Japan Society of Mechanical Engineers</general><general>Japan Society of Mechanical Engineers</general><general>Japan Science and Technology Agency</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>1997</creationdate><title>Treatment of Boundary Conditions in One-Dimensional Wavelet-Galerkin Method</title><author>LU, Dianfeng ; OHYOSHI, Tadashi ; MIURA, Kimihisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-c82360859097062b9dabaa57a804747e50c2d9def2a2bdb5ece341786dd629803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Boundary Condition</topic><topic>Computational Mechanics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Linear Differential Equation</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Vibrations and mechanical waves</topic><topic>Wavelet-Galerkin Method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LU, Dianfeng</creatorcontrib><creatorcontrib>OHYOSHI, Tadashi</creatorcontrib><creatorcontrib>MIURA, Kimihisa</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>JSME International Journal Series A Solid Mechanics and Material Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LU, Dianfeng</au><au>OHYOSHI, Tadashi</au><au>MIURA, Kimihisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Treatment of Boundary Conditions in One-Dimensional Wavelet-Galerkin Method</atitle><jtitle>JSME International Journal Series A Solid Mechanics and Material Engineering</jtitle><date>1997</date><risdate>1997</risdate><volume>40</volume><issue>4</issue><spage>382</spage><epage>388</epage><pages>382-388</pages><issn>1344-7912</issn><issn>1340-8046</issn><eissn>1347-5363</eissn><abstract>One of the main problems of the Wavelet-Galerkin Method is the treatment of boundary conditions. To deal with this difficulty, the boundaries of wavelet series expansion are assumed to be the analytic boundaries of the problem. The boundary condition equations are replaced by end equations in the Galerkin system. The manipulation discussed here enables us to use classical wavelets and to tackle the problem more simply. However, we find that the end equations are a necessary part of the Galerkin equation system within the boundaries. To maintain the integrity of the system, the boundaries of wavelet series expansion are shifted until the end equations do not depend on any expansion coefficients ck of φ(2jx-k)that affect the solution within the real boundaries. Therefore replacing the end equations gives a good result in comparison to the exact solution.</abstract><cop>Tokyo</cop><pub>The Japan Society of Mechanical Engineers</pub><doi>10.1299/jsmea.40.382</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1344-7912
ispartof JSME International Journal Series A Solid Mechanics and Material Engineering, 1997/10/15, Vol.40(4), pp.382-388
issn 1344-7912
1340-8046
1347-5363
language eng
recordid cdi_proquest_journals_1467459018
source J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Boundary Condition
Computational Mechanics
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Linear Differential Equation
Physics
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Vibrations and mechanical waves
Wavelet-Galerkin Method
title Treatment of Boundary Conditions in One-Dimensional Wavelet-Galerkin Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Treatment%20of%20Boundary%20Conditions%20in%20One-Dimensional%20Wavelet-Galerkin%20Method&rft.jtitle=JSME%20International%20Journal%20Series%20A%20Solid%20Mechanics%20and%20Material%20Engineering&rft.au=LU,%20Dianfeng&rft.date=1997&rft.volume=40&rft.issue=4&rft.spage=382&rft.epage=388&rft.pages=382-388&rft.issn=1344-7912&rft.eissn=1347-5363&rft_id=info:doi/10.1299/jsmea.40.382&rft_dat=%3Cproquest_cross%3E3154025941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1467459018&rft_id=info:pmid/&rfr_iscdi=true