Diffusion least-mean P-power algorithms for distributed estimation in alpha-stable noise environments

A diffusion least-mean P-power (LMP) algorithm is proposed for distributed estimation in alpha-stable noise environments, which is one of the widely used models that appears in various environments. Compared with the diffusion least-mean squares algorithm, better performance is obtained for the diff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics letters 2013-10, Vol.49 (21), p.1355-1356
1. Verfasser: Wen, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1356
container_issue 21
container_start_page 1355
container_title Electronics letters
container_volume 49
creator Wen, F
description A diffusion least-mean P-power (LMP) algorithm is proposed for distributed estimation in alpha-stable noise environments, which is one of the widely used models that appears in various environments. Compared with the diffusion least-mean squares algorithm, better performance is obtained for the diffusion LMP methods when the noise is with alpha-stable distribution.
doi_str_mv 10.1049/el.2013.2331
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_journals_1466276764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671449384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5385-aeef822954145dd53f9fa0d65c921698b6019e3cbb73fb364a9f9cbec8aaad123</originalsourceid><addsrcrecordid>eNp9kE1r1UAUhoMoeKnd-QMCKrhorvOdzFLrrRYCulBwN0wmZ-zIZCbOJJb--064RYuUrg4cnvPynLeqXmK0x4jJd-D3BGG6J5TiJ9UOU44aifGPp9UOlX3DsWTPq9Oc3YAww0wghncVfHTWrtnFUHvQeWkm0KH-2szxGlKt_c-Y3HI15drGVI8uL8kN6wJjDXlxk162QxcKOF_pJi968FCH6DLUEP64FMMEYckvqmdW-wynd_Ok-n5x-Hb-uem_fLo8f983htOONxrAdoRIXvT4OHJqpdVoFNxIgoXsBoGwBGqGoaV2oIJpaaUZwHRa6xETelK9PebOKf5ei6KaXDbgvQ4Q16ywaDFjknasoK_-Q3_FNYVip0o3grSiFRt1dqRMijknsGpO5e10ozBSW-0KvNpqV1vtBX9zF6qz0d4mHYzLf29I28quQxvHj9y183DzaKY69D35cIFQR_m__xzc931Y5fUD6KG_lzyPlt4CDf6rtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1466276764</pqid></control><display><type>article</type><title>Diffusion least-mean P-power algorithms for distributed estimation in alpha-stable noise environments</title><source>Wiley Online Library Open Access</source><creator>Wen, F</creator><creatorcontrib>Wen, F</creatorcontrib><description>A diffusion least-mean P-power (LMP) algorithm is proposed for distributed estimation in alpha-stable noise environments, which is one of the widely used models that appears in various environments. Compared with the diffusion least-mean squares algorithm, better performance is obtained for the diffusion LMP methods when the noise is with alpha-stable distribution.</description><identifier>ISSN: 0013-5194</identifier><identifier>ISSN: 1350-911X</identifier><identifier>EISSN: 1350-911X</identifier><identifier>DOI: 10.1049/el.2013.2331</identifier><identifier>CODEN: ELLEAK</identifier><language>eng</language><publisher>Stevenage: The Institution of Engineering and Technology</publisher><subject>adaptive estimation ; Algorithms ; alpha‐stable distribution ; alpha‐stable noise environment ; Applied sciences ; Detection, estimation, filtering, equalization, prediction ; Diffusion ; diffusion least‐mean P‐power algorithm ; distributed estimation ; Exact sciences and technology ; impulse noise ; Information, signal and communications theory ; least mean squares methods ; least‐mean square algorithm ; LMP algorithm ; Noise ; Signal and communications theory ; signal processing ; Signal, noise ; Telecommunications and information theory ; Wireless communications</subject><ispartof>Electronics letters, 2013-10, Vol.49 (21), p.1355-1356</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2020 The Institution of Engineering and Technology</rights><rights>2014 INIST-CNRS</rights><rights>Copyright The Institution of Engineering &amp; Technology Oct 10, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5385-aeef822954145dd53f9fa0d65c921698b6019e3cbb73fb364a9f9cbec8aaad123</citedby><cites>FETCH-LOGICAL-c5385-aeef822954145dd53f9fa0d65c921698b6019e3cbb73fb364a9f9cbec8aaad123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fel.2013.2331$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fel.2013.2331$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11542,27903,27904,45553,45554,46031,46455</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2013.2331$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27798801$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wen, F</creatorcontrib><title>Diffusion least-mean P-power algorithms for distributed estimation in alpha-stable noise environments</title><title>Electronics letters</title><description>A diffusion least-mean P-power (LMP) algorithm is proposed for distributed estimation in alpha-stable noise environments, which is one of the widely used models that appears in various environments. Compared with the diffusion least-mean squares algorithm, better performance is obtained for the diffusion LMP methods when the noise is with alpha-stable distribution.</description><subject>adaptive estimation</subject><subject>Algorithms</subject><subject>alpha‐stable distribution</subject><subject>alpha‐stable noise environment</subject><subject>Applied sciences</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Diffusion</subject><subject>diffusion least‐mean P‐power algorithm</subject><subject>distributed estimation</subject><subject>Exact sciences and technology</subject><subject>impulse noise</subject><subject>Information, signal and communications theory</subject><subject>least mean squares methods</subject><subject>least‐mean square algorithm</subject><subject>LMP algorithm</subject><subject>Noise</subject><subject>Signal and communications theory</subject><subject>signal processing</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><subject>Wireless communications</subject><issn>0013-5194</issn><issn>1350-911X</issn><issn>1350-911X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1r1UAUhoMoeKnd-QMCKrhorvOdzFLrrRYCulBwN0wmZ-zIZCbOJJb--064RYuUrg4cnvPynLeqXmK0x4jJd-D3BGG6J5TiJ9UOU44aifGPp9UOlX3DsWTPq9Oc3YAww0wghncVfHTWrtnFUHvQeWkm0KH-2szxGlKt_c-Y3HI15drGVI8uL8kN6wJjDXlxk162QxcKOF_pJi968FCH6DLUEP64FMMEYckvqmdW-wynd_Ok-n5x-Hb-uem_fLo8f983htOONxrAdoRIXvT4OHJqpdVoFNxIgoXsBoGwBGqGoaV2oIJpaaUZwHRa6xETelK9PebOKf5ei6KaXDbgvQ4Q16ywaDFjknasoK_-Q3_FNYVip0o3grSiFRt1dqRMijknsGpO5e10ozBSW-0KvNpqV1vtBX9zF6qz0d4mHYzLf29I28quQxvHj9y183DzaKY69D35cIFQR_m__xzc931Y5fUD6KG_lzyPlt4CDf6rtA</recordid><startdate>20131010</startdate><enddate>20131010</enddate><creator>Wen, F</creator><general>The Institution of Engineering and Technology</general><general>Institution of Engineering and Technology</general><general>John Wiley &amp; Sons, Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20131010</creationdate><title>Diffusion least-mean P-power algorithms for distributed estimation in alpha-stable noise environments</title><author>Wen, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5385-aeef822954145dd53f9fa0d65c921698b6019e3cbb73fb364a9f9cbec8aaad123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>adaptive estimation</topic><topic>Algorithms</topic><topic>alpha‐stable distribution</topic><topic>alpha‐stable noise environment</topic><topic>Applied sciences</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Diffusion</topic><topic>diffusion least‐mean P‐power algorithm</topic><topic>distributed estimation</topic><topic>Exact sciences and technology</topic><topic>impulse noise</topic><topic>Information, signal and communications theory</topic><topic>least mean squares methods</topic><topic>least‐mean square algorithm</topic><topic>LMP algorithm</topic><topic>Noise</topic><topic>Signal and communications theory</topic><topic>signal processing</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, F</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electronics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wen, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion least-mean P-power algorithms for distributed estimation in alpha-stable noise environments</atitle><jtitle>Electronics letters</jtitle><date>2013-10-10</date><risdate>2013</risdate><volume>49</volume><issue>21</issue><spage>1355</spage><epage>1356</epage><pages>1355-1356</pages><issn>0013-5194</issn><issn>1350-911X</issn><eissn>1350-911X</eissn><coden>ELLEAK</coden><abstract>A diffusion least-mean P-power (LMP) algorithm is proposed for distributed estimation in alpha-stable noise environments, which is one of the widely used models that appears in various environments. Compared with the diffusion least-mean squares algorithm, better performance is obtained for the diffusion LMP methods when the noise is with alpha-stable distribution.</abstract><cop>Stevenage</cop><pub>The Institution of Engineering and Technology</pub><doi>10.1049/el.2013.2331</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0013-5194
ispartof Electronics letters, 2013-10, Vol.49 (21), p.1355-1356
issn 0013-5194
1350-911X
1350-911X
language eng
recordid cdi_proquest_journals_1466276764
source Wiley Online Library Open Access
subjects adaptive estimation
Algorithms
alpha‐stable distribution
alpha‐stable noise environment
Applied sciences
Detection, estimation, filtering, equalization, prediction
Diffusion
diffusion least‐mean P‐power algorithm
distributed estimation
Exact sciences and technology
impulse noise
Information, signal and communications theory
least mean squares methods
least‐mean square algorithm
LMP algorithm
Noise
Signal and communications theory
signal processing
Signal, noise
Telecommunications and information theory
Wireless communications
title Diffusion least-mean P-power algorithms for distributed estimation in alpha-stable noise environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A42%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20least-mean%20P-power%20algorithms%20for%20distributed%20estimation%20in%20alpha-stable%20noise%20environments&rft.jtitle=Electronics%20letters&rft.au=Wen,%20F&rft.date=2013-10-10&rft.volume=49&rft.issue=21&rft.spage=1355&rft.epage=1356&rft.pages=1355-1356&rft.issn=0013-5194&rft.eissn=1350-911X&rft.coden=ELLEAK&rft_id=info:doi/10.1049/el.2013.2331&rft_dat=%3Cproquest_24P%3E1671449384%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1466276764&rft_id=info:pmid/&rfr_iscdi=true