Posterior consistency in linear models under shrinkage priors

We investigate the asymptotic behaviour of posterior distributions of regression coefficients in highdimensional linear models as the number of dimensions grows with the number of observations. We show that the posterior distribution concentrates in neighbourhoods of the true parameter under simple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2013-12, Vol.100 (4), p.1011-1018
Hauptverfasser: ARMAGAN, A., DUNSON, D. B., LEE, J., BAJWA, W. U., STRAWN, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1018
container_issue 4
container_start_page 1011
container_title Biometrika
container_volume 100
creator ARMAGAN, A.
DUNSON, D. B.
LEE, J.
BAJWA, W. U.
STRAWN, N.
description We investigate the asymptotic behaviour of posterior distributions of regression coefficients in highdimensional linear models as the number of dimensions grows with the number of observations. We show that the posterior distribution concentrates in neighbourhoods of the true parameter under simple sufficient conditions. These conditions hold under popular shrinkage priors given some sparsity assumptions.
doi_str_mv 10.1093/biomet/ast028
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1466250689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43305586</jstor_id><sourcerecordid>43305586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-39b68c07d02360b499a6d86bb6d4b28c5d0a1e57c56210635eb41bfcf5eebba43</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4MoWKdHj0LAc91Lk7ylBw8ynAoDPeg5JGmqnWsyk-6w_96OiqfHFz7v14eQawZ3DGo-t13s_TA3eYBKnZCCCRQllwxOSQEAWHIhxDm5yHlzjCixIPdvMQ8-dTFRF0PuxhDcgXaBbrvgTaJ9bPw2031ofKL5K3Xh23x6uju25Ety1ppt9ld_dUY-Vo_vy-dy_fr0snxYl65Si6HktUXlYNFAxRGsqGuDjUJrsRG2Uk42YJiXCyexYoBceiuYbV0rvbfWCD4jt9PcXYo_e58HvYn7FMaVenwSKwmo6pEqJ8qlmHPyrR6v7E06aAb6aEhPhvRkaORvJn6Th5j-YcE5SKmQ_wJl0WWl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1466250689</pqid></control><display><type>article</type><title>Posterior consistency in linear models under shrinkage priors</title><source>Jstor Complete Legacy</source><source>Oxford Journals - Connect here FIRST to enable access</source><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics &amp; Business</source><creator>ARMAGAN, A. ; DUNSON, D. B. ; LEE, J. ; BAJWA, W. U. ; STRAWN, N.</creator><creatorcontrib>ARMAGAN, A. ; DUNSON, D. B. ; LEE, J. ; BAJWA, W. U. ; STRAWN, N.</creatorcontrib><description>We investigate the asymptotic behaviour of posterior distributions of regression coefficients in highdimensional linear models as the number of dimensions grows with the number of observations. We show that the posterior distribution concentrates in neighbourhoods of the true parameter under simple sufficient conditions. These conditions hold under popular shrinkage priors given some sparsity assumptions.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/ast028</identifier><identifier>CODEN: BIOKAX</identifier><language>eng</language><publisher>Oxford: Biometrika Trust, University College London</publisher><subject>Asymptotic methods ; Mathematical models ; Miscellanea ; Probability distribution ; Regression analysis ; Shrinkage ; Studies</subject><ispartof>Biometrika, 2013-12, Vol.100 (4), p.1011-1018</ispartof><rights>2013 Biometrika Trust</rights><rights>Copyright Oxford Publishing Limited(England) Dec 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-39b68c07d02360b499a6d86bb6d4b28c5d0a1e57c56210635eb41bfcf5eebba43</citedby><cites>FETCH-LOGICAL-c287t-39b68c07d02360b499a6d86bb6d4b28c5d0a1e57c56210635eb41bfcf5eebba43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43305586$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43305586$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57996,58000,58229,58233</link.rule.ids></links><search><creatorcontrib>ARMAGAN, A.</creatorcontrib><creatorcontrib>DUNSON, D. B.</creatorcontrib><creatorcontrib>LEE, J.</creatorcontrib><creatorcontrib>BAJWA, W. U.</creatorcontrib><creatorcontrib>STRAWN, N.</creatorcontrib><title>Posterior consistency in linear models under shrinkage priors</title><title>Biometrika</title><description>We investigate the asymptotic behaviour of posterior distributions of regression coefficients in highdimensional linear models as the number of dimensions grows with the number of observations. We show that the posterior distribution concentrates in neighbourhoods of the true parameter under simple sufficient conditions. These conditions hold under popular shrinkage priors given some sparsity assumptions.</description><subject>Asymptotic methods</subject><subject>Mathematical models</subject><subject>Miscellanea</subject><subject>Probability distribution</subject><subject>Regression analysis</subject><subject>Shrinkage</subject><subject>Studies</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAUx4MoWKdHj0LAc91Lk7ylBw8ynAoDPeg5JGmqnWsyk-6w_96OiqfHFz7v14eQawZ3DGo-t13s_TA3eYBKnZCCCRQllwxOSQEAWHIhxDm5yHlzjCixIPdvMQ8-dTFRF0PuxhDcgXaBbrvgTaJ9bPw2031ofKL5K3Xh23x6uju25Ety1ppt9ld_dUY-Vo_vy-dy_fr0snxYl65Si6HktUXlYNFAxRGsqGuDjUJrsRG2Uk42YJiXCyexYoBceiuYbV0rvbfWCD4jt9PcXYo_e58HvYn7FMaVenwSKwmo6pEqJ8qlmHPyrR6v7E06aAb6aEhPhvRkaORvJn6Th5j-YcE5SKmQ_wJl0WWl</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>ARMAGAN, A.</creator><creator>DUNSON, D. B.</creator><creator>LEE, J.</creator><creator>BAJWA, W. U.</creator><creator>STRAWN, N.</creator><general>Biometrika Trust, University College London</general><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20131201</creationdate><title>Posterior consistency in linear models under shrinkage priors</title><author>ARMAGAN, A. ; DUNSON, D. B. ; LEE, J. ; BAJWA, W. U. ; STRAWN, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-39b68c07d02360b499a6d86bb6d4b28c5d0a1e57c56210635eb41bfcf5eebba43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asymptotic methods</topic><topic>Mathematical models</topic><topic>Miscellanea</topic><topic>Probability distribution</topic><topic>Regression analysis</topic><topic>Shrinkage</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ARMAGAN, A.</creatorcontrib><creatorcontrib>DUNSON, D. B.</creatorcontrib><creatorcontrib>LEE, J.</creatorcontrib><creatorcontrib>BAJWA, W. U.</creatorcontrib><creatorcontrib>STRAWN, N.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ARMAGAN, A.</au><au>DUNSON, D. B.</au><au>LEE, J.</au><au>BAJWA, W. U.</au><au>STRAWN, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Posterior consistency in linear models under shrinkage priors</atitle><jtitle>Biometrika</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>100</volume><issue>4</issue><spage>1011</spage><epage>1018</epage><pages>1011-1018</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><coden>BIOKAX</coden><abstract>We investigate the asymptotic behaviour of posterior distributions of regression coefficients in highdimensional linear models as the number of dimensions grows with the number of observations. We show that the posterior distribution concentrates in neighbourhoods of the true parameter under simple sufficient conditions. These conditions hold under popular shrinkage priors given some sparsity assumptions.</abstract><cop>Oxford</cop><pub>Biometrika Trust, University College London</pub><doi>10.1093/biomet/ast028</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 2013-12, Vol.100 (4), p.1011-1018
issn 0006-3444
1464-3510
language eng
recordid cdi_proquest_journals_1466250689
source Jstor Complete Legacy; Oxford Journals - Connect here FIRST to enable access; Alma/SFX Local Collection; JSTOR Mathematics & Business
subjects Asymptotic methods
Mathematical models
Miscellanea
Probability distribution
Regression analysis
Shrinkage
Studies
title Posterior consistency in linear models under shrinkage priors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A47%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Posterior%20consistency%20in%20linear%20models%20under%20shrinkage%20priors&rft.jtitle=Biometrika&rft.au=ARMAGAN,%20A.&rft.date=2013-12-01&rft.volume=100&rft.issue=4&rft.spage=1011&rft.epage=1018&rft.pages=1011-1018&rft.issn=0006-3444&rft.eissn=1464-3510&rft.coden=BIOKAX&rft_id=info:doi/10.1093/biomet/ast028&rft_dat=%3Cjstor_proqu%3E43305586%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1466250689&rft_id=info:pmid/&rft_jstor_id=43305586&rfr_iscdi=true