Posterior consistency in linear models under shrinkage priors
We investigate the asymptotic behaviour of posterior distributions of regression coefficients in highdimensional linear models as the number of dimensions grows with the number of observations. We show that the posterior distribution concentrates in neighbourhoods of the true parameter under simple...
Gespeichert in:
Veröffentlicht in: | Biometrika 2013-12, Vol.100 (4), p.1011-1018 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1018 |
---|---|
container_issue | 4 |
container_start_page | 1011 |
container_title | Biometrika |
container_volume | 100 |
creator | ARMAGAN, A. DUNSON, D. B. LEE, J. BAJWA, W. U. STRAWN, N. |
description | We investigate the asymptotic behaviour of posterior distributions of regression coefficients in highdimensional linear models as the number of dimensions grows with the number of observations. We show that the posterior distribution concentrates in neighbourhoods of the true parameter under simple sufficient conditions. These conditions hold under popular shrinkage priors given some sparsity assumptions. |
doi_str_mv | 10.1093/biomet/ast028 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1466250689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43305586</jstor_id><sourcerecordid>43305586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-39b68c07d02360b499a6d86bb6d4b28c5d0a1e57c56210635eb41bfcf5eebba43</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4MoWKdHj0LAc91Lk7ylBw8ynAoDPeg5JGmqnWsyk-6w_96OiqfHFz7v14eQawZ3DGo-t13s_TA3eYBKnZCCCRQllwxOSQEAWHIhxDm5yHlzjCixIPdvMQ8-dTFRF0PuxhDcgXaBbrvgTaJ9bPw2031ofKL5K3Xh23x6uju25Ety1ppt9ld_dUY-Vo_vy-dy_fr0snxYl65Si6HktUXlYNFAxRGsqGuDjUJrsRG2Uk42YJiXCyexYoBceiuYbV0rvbfWCD4jt9PcXYo_e58HvYn7FMaVenwSKwmo6pEqJ8qlmHPyrR6v7E06aAb6aEhPhvRkaORvJn6Th5j-YcE5SKmQ_wJl0WWl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1466250689</pqid></control><display><type>article</type><title>Posterior consistency in linear models under shrinkage priors</title><source>Jstor Complete Legacy</source><source>Oxford Journals - Connect here FIRST to enable access</source><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics & Business</source><creator>ARMAGAN, A. ; DUNSON, D. B. ; LEE, J. ; BAJWA, W. U. ; STRAWN, N.</creator><creatorcontrib>ARMAGAN, A. ; DUNSON, D. B. ; LEE, J. ; BAJWA, W. U. ; STRAWN, N.</creatorcontrib><description>We investigate the asymptotic behaviour of posterior distributions of regression coefficients in highdimensional linear models as the number of dimensions grows with the number of observations. We show that the posterior distribution concentrates in neighbourhoods of the true parameter under simple sufficient conditions. These conditions hold under popular shrinkage priors given some sparsity assumptions.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/ast028</identifier><identifier>CODEN: BIOKAX</identifier><language>eng</language><publisher>Oxford: Biometrika Trust, University College London</publisher><subject>Asymptotic methods ; Mathematical models ; Miscellanea ; Probability distribution ; Regression analysis ; Shrinkage ; Studies</subject><ispartof>Biometrika, 2013-12, Vol.100 (4), p.1011-1018</ispartof><rights>2013 Biometrika Trust</rights><rights>Copyright Oxford Publishing Limited(England) Dec 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-39b68c07d02360b499a6d86bb6d4b28c5d0a1e57c56210635eb41bfcf5eebba43</citedby><cites>FETCH-LOGICAL-c287t-39b68c07d02360b499a6d86bb6d4b28c5d0a1e57c56210635eb41bfcf5eebba43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43305586$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43305586$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57996,58000,58229,58233</link.rule.ids></links><search><creatorcontrib>ARMAGAN, A.</creatorcontrib><creatorcontrib>DUNSON, D. B.</creatorcontrib><creatorcontrib>LEE, J.</creatorcontrib><creatorcontrib>BAJWA, W. U.</creatorcontrib><creatorcontrib>STRAWN, N.</creatorcontrib><title>Posterior consistency in linear models under shrinkage priors</title><title>Biometrika</title><description>We investigate the asymptotic behaviour of posterior distributions of regression coefficients in highdimensional linear models as the number of dimensions grows with the number of observations. We show that the posterior distribution concentrates in neighbourhoods of the true parameter under simple sufficient conditions. These conditions hold under popular shrinkage priors given some sparsity assumptions.</description><subject>Asymptotic methods</subject><subject>Mathematical models</subject><subject>Miscellanea</subject><subject>Probability distribution</subject><subject>Regression analysis</subject><subject>Shrinkage</subject><subject>Studies</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAUx4MoWKdHj0LAc91Lk7ylBw8ynAoDPeg5JGmqnWsyk-6w_96OiqfHFz7v14eQawZ3DGo-t13s_TA3eYBKnZCCCRQllwxOSQEAWHIhxDm5yHlzjCixIPdvMQ8-dTFRF0PuxhDcgXaBbrvgTaJ9bPw2031ofKL5K3Xh23x6uju25Ety1ppt9ld_dUY-Vo_vy-dy_fr0snxYl65Si6HktUXlYNFAxRGsqGuDjUJrsRG2Uk42YJiXCyexYoBceiuYbV0rvbfWCD4jt9PcXYo_e58HvYn7FMaVenwSKwmo6pEqJ8qlmHPyrR6v7E06aAb6aEhPhvRkaORvJn6Th5j-YcE5SKmQ_wJl0WWl</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>ARMAGAN, A.</creator><creator>DUNSON, D. B.</creator><creator>LEE, J.</creator><creator>BAJWA, W. U.</creator><creator>STRAWN, N.</creator><general>Biometrika Trust, University College London</general><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20131201</creationdate><title>Posterior consistency in linear models under shrinkage priors</title><author>ARMAGAN, A. ; DUNSON, D. B. ; LEE, J. ; BAJWA, W. U. ; STRAWN, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-39b68c07d02360b499a6d86bb6d4b28c5d0a1e57c56210635eb41bfcf5eebba43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asymptotic methods</topic><topic>Mathematical models</topic><topic>Miscellanea</topic><topic>Probability distribution</topic><topic>Regression analysis</topic><topic>Shrinkage</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ARMAGAN, A.</creatorcontrib><creatorcontrib>DUNSON, D. B.</creatorcontrib><creatorcontrib>LEE, J.</creatorcontrib><creatorcontrib>BAJWA, W. U.</creatorcontrib><creatorcontrib>STRAWN, N.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ARMAGAN, A.</au><au>DUNSON, D. B.</au><au>LEE, J.</au><au>BAJWA, W. U.</au><au>STRAWN, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Posterior consistency in linear models under shrinkage priors</atitle><jtitle>Biometrika</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>100</volume><issue>4</issue><spage>1011</spage><epage>1018</epage><pages>1011-1018</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><coden>BIOKAX</coden><abstract>We investigate the asymptotic behaviour of posterior distributions of regression coefficients in highdimensional linear models as the number of dimensions grows with the number of observations. We show that the posterior distribution concentrates in neighbourhoods of the true parameter under simple sufficient conditions. These conditions hold under popular shrinkage priors given some sparsity assumptions.</abstract><cop>Oxford</cop><pub>Biometrika Trust, University College London</pub><doi>10.1093/biomet/ast028</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3444 |
ispartof | Biometrika, 2013-12, Vol.100 (4), p.1011-1018 |
issn | 0006-3444 1464-3510 |
language | eng |
recordid | cdi_proquest_journals_1466250689 |
source | Jstor Complete Legacy; Oxford Journals - Connect here FIRST to enable access; Alma/SFX Local Collection; JSTOR Mathematics & Business |
subjects | Asymptotic methods Mathematical models Miscellanea Probability distribution Regression analysis Shrinkage Studies |
title | Posterior consistency in linear models under shrinkage priors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A47%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Posterior%20consistency%20in%20linear%20models%20under%20shrinkage%20priors&rft.jtitle=Biometrika&rft.au=ARMAGAN,%20A.&rft.date=2013-12-01&rft.volume=100&rft.issue=4&rft.spage=1011&rft.epage=1018&rft.pages=1011-1018&rft.issn=0006-3444&rft.eissn=1464-3510&rft.coden=BIOKAX&rft_id=info:doi/10.1093/biomet/ast028&rft_dat=%3Cjstor_proqu%3E43305586%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1466250689&rft_id=info:pmid/&rft_jstor_id=43305586&rfr_iscdi=true |