Analysis of non-stationary dynamics in the financial system

Novel data-driven analyses, appropriate for detecting economic instability in non-stationary time series, are developed using functional principal component analysis (fPCA) and Synchrosqueezing. fPCA is applied in a new way, aggregating multiple financial time series to identify periods of macroecon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Economics letters 2013-12, Vol.121 (3), p.454-457
Hauptverfasser: Guharay, Samar K., Thakur, Gaurav S., Goodman, Fred J., Rosen, Scott L., Houser, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 457
container_issue 3
container_start_page 454
container_title Economics letters
container_volume 121
creator Guharay, Samar K.
Thakur, Gaurav S.
Goodman, Fred J.
Rosen, Scott L.
Houser, Daniel
description Novel data-driven analyses, appropriate for detecting economic instability in non-stationary time series, are developed using functional principal component analysis (fPCA) and Synchrosqueezing. fPCA is applied in a new way, aggregating multiple financial time series to identify periods of macroeconomic instability. Synchrosqueezing, a technique which generates a time-series’ time-dependent spectral decomposition, is modified to develop a new quantitative measure of local dynamical changes and structural breaks. The merit of this integrated technique is demonstrated by analyzing financial data from 1986 to 2012 that includes equity indices, securities and commodities, and foreign exchange. Both procedures successfully detect key historic periods of instability. Moreover, the results reveal distinctions between periods of long-term gradual change in addition to structural breaks. These tools offer new insights into the analysis of financial instability. •We develop two novel approaches to detect instability in financial time series.•The methods use functional PCA and Synchrosqeezing analyses.•Both procedures successfully detect key historic periods of instability.•Our analysis is applicable to finding gradual changes as well as structural breaks.
doi_str_mv 10.1016/j.econlet.2013.09.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1466171835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165176513004333</els_id><sourcerecordid>3150573551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-2466fdd6c20244a824fbfec28b622eb332a0bba9b1e6624879f5612f06bbd9123</originalsourceid><addsrcrecordid>eNqFkE1LxDAURYMoOI7-BKHgujUvbdMWFzIMfsGAG12HJH3BlJlkTDJC_70Zxr2rt7n38O4h5BZoBRT4_VSh9m6LqWIU6ooOFWX8jCyg7-qyq7vmnCxyri2h4-0luYpxohTY0LUL8rBycjtHGwtvCuddGZNM1jsZ5mKcndxZHQvrivSFhbFOOm3ltohzTLi7JhdGbiPe_N0l-Xx--li_lpv3l7f1alPqhkIqWcO5GUeuGWVNI3vWGGVQs15xxlDVNZNUKTkoQM5Z03eDaTkwQ7lS4wCsXpK7E3cf_PcBYxKTP4T8dxSQ2dBBX7c51Z5SOvgYAxqxD3aXdwig4uhJTOLPkzh6EnQQ2VPuPZ56mCf8WAwiaotO42gD6iRGb_8h_AKn0XNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1466171835</pqid></control><display><type>article</type><title>Analysis of non-stationary dynamics in the financial system</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Guharay, Samar K. ; Thakur, Gaurav S. ; Goodman, Fred J. ; Rosen, Scott L. ; Houser, Daniel</creator><creatorcontrib>Guharay, Samar K. ; Thakur, Gaurav S. ; Goodman, Fred J. ; Rosen, Scott L. ; Houser, Daniel</creatorcontrib><description>Novel data-driven analyses, appropriate for detecting economic instability in non-stationary time series, are developed using functional principal component analysis (fPCA) and Synchrosqueezing. fPCA is applied in a new way, aggregating multiple financial time series to identify periods of macroeconomic instability. Synchrosqueezing, a technique which generates a time-series’ time-dependent spectral decomposition, is modified to develop a new quantitative measure of local dynamical changes and structural breaks. The merit of this integrated technique is demonstrated by analyzing financial data from 1986 to 2012 that includes equity indices, securities and commodities, and foreign exchange. Both procedures successfully detect key historic periods of instability. Moreover, the results reveal distinctions between periods of long-term gradual change in addition to structural breaks. These tools offer new insights into the analysis of financial instability. •We develop two novel approaches to detect instability in financial time series.•The methods use functional PCA and Synchrosqeezing analyses.•Both procedures successfully detect key historic periods of instability.•Our analysis is applicable to finding gradual changes as well as structural breaks.</description><identifier>ISSN: 0165-1765</identifier><identifier>EISSN: 1873-7374</identifier><identifier>DOI: 10.1016/j.econlet.2013.09.026</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Detection of macroeconomic instability ; Econometrics ; Functional PCA ; Indexes ; Macroeconomics ; Measurement techniques ; Multi-time scale characteristics ; Non-stationary time series ; Principal components analysis ; Studies ; Synchrosqueezing ; Time series</subject><ispartof>Economics letters, 2013-12, Vol.121 (3), p.454-457</ispartof><rights>2013 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Dec 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-2466fdd6c20244a824fbfec28b622eb332a0bba9b1e6624879f5612f06bbd9123</citedby><cites>FETCH-LOGICAL-c401t-2466fdd6c20244a824fbfec28b622eb332a0bba9b1e6624879f5612f06bbd9123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0165176513004333$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Guharay, Samar K.</creatorcontrib><creatorcontrib>Thakur, Gaurav S.</creatorcontrib><creatorcontrib>Goodman, Fred J.</creatorcontrib><creatorcontrib>Rosen, Scott L.</creatorcontrib><creatorcontrib>Houser, Daniel</creatorcontrib><title>Analysis of non-stationary dynamics in the financial system</title><title>Economics letters</title><description>Novel data-driven analyses, appropriate for detecting economic instability in non-stationary time series, are developed using functional principal component analysis (fPCA) and Synchrosqueezing. fPCA is applied in a new way, aggregating multiple financial time series to identify periods of macroeconomic instability. Synchrosqueezing, a technique which generates a time-series’ time-dependent spectral decomposition, is modified to develop a new quantitative measure of local dynamical changes and structural breaks. The merit of this integrated technique is demonstrated by analyzing financial data from 1986 to 2012 that includes equity indices, securities and commodities, and foreign exchange. Both procedures successfully detect key historic periods of instability. Moreover, the results reveal distinctions between periods of long-term gradual change in addition to structural breaks. These tools offer new insights into the analysis of financial instability. •We develop two novel approaches to detect instability in financial time series.•The methods use functional PCA and Synchrosqeezing analyses.•Both procedures successfully detect key historic periods of instability.•Our analysis is applicable to finding gradual changes as well as structural breaks.</description><subject>Detection of macroeconomic instability</subject><subject>Econometrics</subject><subject>Functional PCA</subject><subject>Indexes</subject><subject>Macroeconomics</subject><subject>Measurement techniques</subject><subject>Multi-time scale characteristics</subject><subject>Non-stationary time series</subject><subject>Principal components analysis</subject><subject>Studies</subject><subject>Synchrosqueezing</subject><subject>Time series</subject><issn>0165-1765</issn><issn>1873-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAURYMoOI7-BKHgujUvbdMWFzIMfsGAG12HJH3BlJlkTDJC_70Zxr2rt7n38O4h5BZoBRT4_VSh9m6LqWIU6ooOFWX8jCyg7-qyq7vmnCxyri2h4-0luYpxohTY0LUL8rBycjtHGwtvCuddGZNM1jsZ5mKcndxZHQvrivSFhbFOOm3ltohzTLi7JhdGbiPe_N0l-Xx--li_lpv3l7f1alPqhkIqWcO5GUeuGWVNI3vWGGVQs15xxlDVNZNUKTkoQM5Z03eDaTkwQ7lS4wCsXpK7E3cf_PcBYxKTP4T8dxSQ2dBBX7c51Z5SOvgYAxqxD3aXdwig4uhJTOLPkzh6EnQQ2VPuPZ56mCf8WAwiaotO42gD6iRGb_8h_AKn0XNQ</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Guharay, Samar K.</creator><creator>Thakur, Gaurav S.</creator><creator>Goodman, Fred J.</creator><creator>Rosen, Scott L.</creator><creator>Houser, Daniel</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20131201</creationdate><title>Analysis of non-stationary dynamics in the financial system</title><author>Guharay, Samar K. ; Thakur, Gaurav S. ; Goodman, Fred J. ; Rosen, Scott L. ; Houser, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-2466fdd6c20244a824fbfec28b622eb332a0bba9b1e6624879f5612f06bbd9123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Detection of macroeconomic instability</topic><topic>Econometrics</topic><topic>Functional PCA</topic><topic>Indexes</topic><topic>Macroeconomics</topic><topic>Measurement techniques</topic><topic>Multi-time scale characteristics</topic><topic>Non-stationary time series</topic><topic>Principal components analysis</topic><topic>Studies</topic><topic>Synchrosqueezing</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guharay, Samar K.</creatorcontrib><creatorcontrib>Thakur, Gaurav S.</creatorcontrib><creatorcontrib>Goodman, Fred J.</creatorcontrib><creatorcontrib>Rosen, Scott L.</creatorcontrib><creatorcontrib>Houser, Daniel</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Economics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guharay, Samar K.</au><au>Thakur, Gaurav S.</au><au>Goodman, Fred J.</au><au>Rosen, Scott L.</au><au>Houser, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of non-stationary dynamics in the financial system</atitle><jtitle>Economics letters</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>121</volume><issue>3</issue><spage>454</spage><epage>457</epage><pages>454-457</pages><issn>0165-1765</issn><eissn>1873-7374</eissn><abstract>Novel data-driven analyses, appropriate for detecting economic instability in non-stationary time series, are developed using functional principal component analysis (fPCA) and Synchrosqueezing. fPCA is applied in a new way, aggregating multiple financial time series to identify periods of macroeconomic instability. Synchrosqueezing, a technique which generates a time-series’ time-dependent spectral decomposition, is modified to develop a new quantitative measure of local dynamical changes and structural breaks. The merit of this integrated technique is demonstrated by analyzing financial data from 1986 to 2012 that includes equity indices, securities and commodities, and foreign exchange. Both procedures successfully detect key historic periods of instability. Moreover, the results reveal distinctions between periods of long-term gradual change in addition to structural breaks. These tools offer new insights into the analysis of financial instability. •We develop two novel approaches to detect instability in financial time series.•The methods use functional PCA and Synchrosqeezing analyses.•Both procedures successfully detect key historic periods of instability.•Our analysis is applicable to finding gradual changes as well as structural breaks.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.econlet.2013.09.026</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-1765
ispartof Economics letters, 2013-12, Vol.121 (3), p.454-457
issn 0165-1765
1873-7374
language eng
recordid cdi_proquest_journals_1466171835
source Elsevier ScienceDirect Journals Complete
subjects Detection of macroeconomic instability
Econometrics
Functional PCA
Indexes
Macroeconomics
Measurement techniques
Multi-time scale characteristics
Non-stationary time series
Principal components analysis
Studies
Synchrosqueezing
Time series
title Analysis of non-stationary dynamics in the financial system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A51%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20non-stationary%20dynamics%20in%20the%20financial%20system&rft.jtitle=Economics%20letters&rft.au=Guharay,%20Samar%20K.&rft.date=2013-12-01&rft.volume=121&rft.issue=3&rft.spage=454&rft.epage=457&rft.pages=454-457&rft.issn=0165-1765&rft.eissn=1873-7374&rft_id=info:doi/10.1016/j.econlet.2013.09.026&rft_dat=%3Cproquest_cross%3E3150573551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1466171835&rft_id=info:pmid/&rft_els_id=S0165176513004333&rfr_iscdi=true