Analysis of non-stationary dynamics in the financial system
Novel data-driven analyses, appropriate for detecting economic instability in non-stationary time series, are developed using functional principal component analysis (fPCA) and Synchrosqueezing. fPCA is applied in a new way, aggregating multiple financial time series to identify periods of macroecon...
Gespeichert in:
Veröffentlicht in: | Economics letters 2013-12, Vol.121 (3), p.454-457 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 457 |
---|---|
container_issue | 3 |
container_start_page | 454 |
container_title | Economics letters |
container_volume | 121 |
creator | Guharay, Samar K. Thakur, Gaurav S. Goodman, Fred J. Rosen, Scott L. Houser, Daniel |
description | Novel data-driven analyses, appropriate for detecting economic instability in non-stationary time series, are developed using functional principal component analysis (fPCA) and Synchrosqueezing. fPCA is applied in a new way, aggregating multiple financial time series to identify periods of macroeconomic instability. Synchrosqueezing, a technique which generates a time-series’ time-dependent spectral decomposition, is modified to develop a new quantitative measure of local dynamical changes and structural breaks. The merit of this integrated technique is demonstrated by analyzing financial data from 1986 to 2012 that includes equity indices, securities and commodities, and foreign exchange. Both procedures successfully detect key historic periods of instability. Moreover, the results reveal distinctions between periods of long-term gradual change in addition to structural breaks. These tools offer new insights into the analysis of financial instability.
•We develop two novel approaches to detect instability in financial time series.•The methods use functional PCA and Synchrosqeezing analyses.•Both procedures successfully detect key historic periods of instability.•Our analysis is applicable to finding gradual changes as well as structural breaks. |
doi_str_mv | 10.1016/j.econlet.2013.09.026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1466171835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165176513004333</els_id><sourcerecordid>3150573551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-2466fdd6c20244a824fbfec28b622eb332a0bba9b1e6624879f5612f06bbd9123</originalsourceid><addsrcrecordid>eNqFkE1LxDAURYMoOI7-BKHgujUvbdMWFzIMfsGAG12HJH3BlJlkTDJC_70Zxr2rt7n38O4h5BZoBRT4_VSh9m6LqWIU6ooOFWX8jCyg7-qyq7vmnCxyri2h4-0luYpxohTY0LUL8rBycjtHGwtvCuddGZNM1jsZ5mKcndxZHQvrivSFhbFOOm3ltohzTLi7JhdGbiPe_N0l-Xx--li_lpv3l7f1alPqhkIqWcO5GUeuGWVNI3vWGGVQs15xxlDVNZNUKTkoQM5Z03eDaTkwQ7lS4wCsXpK7E3cf_PcBYxKTP4T8dxSQ2dBBX7c51Z5SOvgYAxqxD3aXdwig4uhJTOLPkzh6EnQQ2VPuPZ56mCf8WAwiaotO42gD6iRGb_8h_AKn0XNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1466171835</pqid></control><display><type>article</type><title>Analysis of non-stationary dynamics in the financial system</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Guharay, Samar K. ; Thakur, Gaurav S. ; Goodman, Fred J. ; Rosen, Scott L. ; Houser, Daniel</creator><creatorcontrib>Guharay, Samar K. ; Thakur, Gaurav S. ; Goodman, Fred J. ; Rosen, Scott L. ; Houser, Daniel</creatorcontrib><description>Novel data-driven analyses, appropriate for detecting economic instability in non-stationary time series, are developed using functional principal component analysis (fPCA) and Synchrosqueezing. fPCA is applied in a new way, aggregating multiple financial time series to identify periods of macroeconomic instability. Synchrosqueezing, a technique which generates a time-series’ time-dependent spectral decomposition, is modified to develop a new quantitative measure of local dynamical changes and structural breaks. The merit of this integrated technique is demonstrated by analyzing financial data from 1986 to 2012 that includes equity indices, securities and commodities, and foreign exchange. Both procedures successfully detect key historic periods of instability. Moreover, the results reveal distinctions between periods of long-term gradual change in addition to structural breaks. These tools offer new insights into the analysis of financial instability.
•We develop two novel approaches to detect instability in financial time series.•The methods use functional PCA and Synchrosqeezing analyses.•Both procedures successfully detect key historic periods of instability.•Our analysis is applicable to finding gradual changes as well as structural breaks.</description><identifier>ISSN: 0165-1765</identifier><identifier>EISSN: 1873-7374</identifier><identifier>DOI: 10.1016/j.econlet.2013.09.026</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Detection of macroeconomic instability ; Econometrics ; Functional PCA ; Indexes ; Macroeconomics ; Measurement techniques ; Multi-time scale characteristics ; Non-stationary time series ; Principal components analysis ; Studies ; Synchrosqueezing ; Time series</subject><ispartof>Economics letters, 2013-12, Vol.121 (3), p.454-457</ispartof><rights>2013 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Dec 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-2466fdd6c20244a824fbfec28b622eb332a0bba9b1e6624879f5612f06bbd9123</citedby><cites>FETCH-LOGICAL-c401t-2466fdd6c20244a824fbfec28b622eb332a0bba9b1e6624879f5612f06bbd9123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0165176513004333$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Guharay, Samar K.</creatorcontrib><creatorcontrib>Thakur, Gaurav S.</creatorcontrib><creatorcontrib>Goodman, Fred J.</creatorcontrib><creatorcontrib>Rosen, Scott L.</creatorcontrib><creatorcontrib>Houser, Daniel</creatorcontrib><title>Analysis of non-stationary dynamics in the financial system</title><title>Economics letters</title><description>Novel data-driven analyses, appropriate for detecting economic instability in non-stationary time series, are developed using functional principal component analysis (fPCA) and Synchrosqueezing. fPCA is applied in a new way, aggregating multiple financial time series to identify periods of macroeconomic instability. Synchrosqueezing, a technique which generates a time-series’ time-dependent spectral decomposition, is modified to develop a new quantitative measure of local dynamical changes and structural breaks. The merit of this integrated technique is demonstrated by analyzing financial data from 1986 to 2012 that includes equity indices, securities and commodities, and foreign exchange. Both procedures successfully detect key historic periods of instability. Moreover, the results reveal distinctions between periods of long-term gradual change in addition to structural breaks. These tools offer new insights into the analysis of financial instability.
•We develop two novel approaches to detect instability in financial time series.•The methods use functional PCA and Synchrosqeezing analyses.•Both procedures successfully detect key historic periods of instability.•Our analysis is applicable to finding gradual changes as well as structural breaks.</description><subject>Detection of macroeconomic instability</subject><subject>Econometrics</subject><subject>Functional PCA</subject><subject>Indexes</subject><subject>Macroeconomics</subject><subject>Measurement techniques</subject><subject>Multi-time scale characteristics</subject><subject>Non-stationary time series</subject><subject>Principal components analysis</subject><subject>Studies</subject><subject>Synchrosqueezing</subject><subject>Time series</subject><issn>0165-1765</issn><issn>1873-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAURYMoOI7-BKHgujUvbdMWFzIMfsGAG12HJH3BlJlkTDJC_70Zxr2rt7n38O4h5BZoBRT4_VSh9m6LqWIU6ooOFWX8jCyg7-qyq7vmnCxyri2h4-0luYpxohTY0LUL8rBycjtHGwtvCuddGZNM1jsZ5mKcndxZHQvrivSFhbFOOm3ltohzTLi7JhdGbiPe_N0l-Xx--li_lpv3l7f1alPqhkIqWcO5GUeuGWVNI3vWGGVQs15xxlDVNZNUKTkoQM5Z03eDaTkwQ7lS4wCsXpK7E3cf_PcBYxKTP4T8dxSQ2dBBX7c51Z5SOvgYAxqxD3aXdwig4uhJTOLPkzh6EnQQ2VPuPZ56mCf8WAwiaotO42gD6iRGb_8h_AKn0XNQ</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Guharay, Samar K.</creator><creator>Thakur, Gaurav S.</creator><creator>Goodman, Fred J.</creator><creator>Rosen, Scott L.</creator><creator>Houser, Daniel</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20131201</creationdate><title>Analysis of non-stationary dynamics in the financial system</title><author>Guharay, Samar K. ; Thakur, Gaurav S. ; Goodman, Fred J. ; Rosen, Scott L. ; Houser, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-2466fdd6c20244a824fbfec28b622eb332a0bba9b1e6624879f5612f06bbd9123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Detection of macroeconomic instability</topic><topic>Econometrics</topic><topic>Functional PCA</topic><topic>Indexes</topic><topic>Macroeconomics</topic><topic>Measurement techniques</topic><topic>Multi-time scale characteristics</topic><topic>Non-stationary time series</topic><topic>Principal components analysis</topic><topic>Studies</topic><topic>Synchrosqueezing</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guharay, Samar K.</creatorcontrib><creatorcontrib>Thakur, Gaurav S.</creatorcontrib><creatorcontrib>Goodman, Fred J.</creatorcontrib><creatorcontrib>Rosen, Scott L.</creatorcontrib><creatorcontrib>Houser, Daniel</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Economics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guharay, Samar K.</au><au>Thakur, Gaurav S.</au><au>Goodman, Fred J.</au><au>Rosen, Scott L.</au><au>Houser, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of non-stationary dynamics in the financial system</atitle><jtitle>Economics letters</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>121</volume><issue>3</issue><spage>454</spage><epage>457</epage><pages>454-457</pages><issn>0165-1765</issn><eissn>1873-7374</eissn><abstract>Novel data-driven analyses, appropriate for detecting economic instability in non-stationary time series, are developed using functional principal component analysis (fPCA) and Synchrosqueezing. fPCA is applied in a new way, aggregating multiple financial time series to identify periods of macroeconomic instability. Synchrosqueezing, a technique which generates a time-series’ time-dependent spectral decomposition, is modified to develop a new quantitative measure of local dynamical changes and structural breaks. The merit of this integrated technique is demonstrated by analyzing financial data from 1986 to 2012 that includes equity indices, securities and commodities, and foreign exchange. Both procedures successfully detect key historic periods of instability. Moreover, the results reveal distinctions between periods of long-term gradual change in addition to structural breaks. These tools offer new insights into the analysis of financial instability.
•We develop two novel approaches to detect instability in financial time series.•The methods use functional PCA and Synchrosqeezing analyses.•Both procedures successfully detect key historic periods of instability.•Our analysis is applicable to finding gradual changes as well as structural breaks.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.econlet.2013.09.026</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-1765 |
ispartof | Economics letters, 2013-12, Vol.121 (3), p.454-457 |
issn | 0165-1765 1873-7374 |
language | eng |
recordid | cdi_proquest_journals_1466171835 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Detection of macroeconomic instability Econometrics Functional PCA Indexes Macroeconomics Measurement techniques Multi-time scale characteristics Non-stationary time series Principal components analysis Studies Synchrosqueezing Time series |
title | Analysis of non-stationary dynamics in the financial system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A51%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20non-stationary%20dynamics%20in%20the%20financial%20system&rft.jtitle=Economics%20letters&rft.au=Guharay,%20Samar%20K.&rft.date=2013-12-01&rft.volume=121&rft.issue=3&rft.spage=454&rft.epage=457&rft.pages=454-457&rft.issn=0165-1765&rft.eissn=1873-7374&rft_id=info:doi/10.1016/j.econlet.2013.09.026&rft_dat=%3Cproquest_cross%3E3150573551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1466171835&rft_id=info:pmid/&rft_els_id=S0165176513004333&rfr_iscdi=true |