Global detection of large lunar craters based on the CE-1 digital elevation model

Craters, one of the most significant features of the lunar surface, have been widely researched because they offer us the relative age of the surface unit as well as crucial geological information. Research on crater detec- tion algorithms (CDAs) of the Moon and other planetary bodies has concentrat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of earth science 2013-12, Vol.7 (4), p.456-464
Hauptverfasser: Luo, Lei, Mu, Lingli, Wang, Xinyuan, Li, Chao, Ji, Wei, Zhao, Jinjin, Cai, Heng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 464
container_issue 4
container_start_page 456
container_title Frontiers of earth science
container_volume 7
creator Luo, Lei
Mu, Lingli
Wang, Xinyuan
Li, Chao
Ji, Wei
Zhao, Jinjin
Cai, Heng
description Craters, one of the most significant features of the lunar surface, have been widely researched because they offer us the relative age of the surface unit as well as crucial geological information. Research on crater detec- tion algorithms (CDAs) of the Moon and other planetary bodies has concentrated on detecting them from imagery data, but the computational cost of detecting large craters using images makes these CDAs impractical. This paper presents a new approach to crater detection that utilizes a digital elevation model instead of images; this enables fully automatic global detection of large craters. Craters were delineated by terrain attributes, and then thresholding maps of terrain attributes were used to transform topographic data into a binary image, finally craters were detected by using the Hough Transform from the binary image. By using the proposed algorithm, we produced a catalog of all craters ≥ 10 km in diameter on the lunar surface and analyzed their distribution and population characteristics.
doi_str_mv 10.1007/s11707-013-0361-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1460841093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>48161579</cqvip_id><sourcerecordid>3134995941</sourcerecordid><originalsourceid>FETCH-LOGICAL-a438t-ed76304ea10d41f84c96b1104643b54995e6f8a5e8c13cadb4a52b3fc66fa8b63</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYsoKNMP4JMRn6v3NmnaPsqYf2AgonsOaXvTdXTNTDrBb29mp_i0QJILOb-be04UXSLcIkB25xEzyGJAHgOXGPOj6CyBIo0hnMe_NRbpaXTh_QrCyrOwxVn0-tjZUnespoGqobU9s4Z12jXEum2vHaucHsh5VmpPNQvvw5LYdBYjq9umHQJKHX3qH3Rta-rOoxOjO08X-3sSLR5m79OneP7y-Dy9n8da8HyIqc4kB0EaoRZoclEVskQEIQUvU1EUKUmT65TyCnml61LoNCm5qaQ0Oi8ln0Q3Y9-Nsx9b8oNa2a3rw5cKhQzmEAoeVDiqKme9d2TUxrVr7b4UgtqFp8bwVAhP7cJTOyYZGR-0fUPuX-cDUD5Cy7ZZkqN648h7ZZzthzYEeBC9GlGjrdKNa71avCWAAgBTIVEExfXexdL2zUcY6s-GyFFimhX8G3xalnI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1460841093</pqid></control><display><type>article</type><title>Global detection of large lunar craters based on the CE-1 digital elevation model</title><source>Springer Online Journals Complete</source><creator>Luo, Lei ; Mu, Lingli ; Wang, Xinyuan ; Li, Chao ; Ji, Wei ; Zhao, Jinjin ; Cai, Heng</creator><creatorcontrib>Luo, Lei ; Mu, Lingli ; Wang, Xinyuan ; Li, Chao ; Ji, Wei ; Zhao, Jinjin ; Cai, Heng</creatorcontrib><description>Craters, one of the most significant features of the lunar surface, have been widely researched because they offer us the relative age of the surface unit as well as crucial geological information. Research on crater detec- tion algorithms (CDAs) of the Moon and other planetary bodies has concentrated on detecting them from imagery data, but the computational cost of detecting large craters using images makes these CDAs impractical. This paper presents a new approach to crater detection that utilizes a digital elevation model instead of images; this enables fully automatic global detection of large craters. Craters were delineated by terrain attributes, and then thresholding maps of terrain attributes were used to transform topographic data into a binary image, finally craters were detected by using the Hough Transform from the binary image. By using the proposed algorithm, we produced a catalog of all craters ≥ 10 km in diameter on the lunar surface and analyzed their distribution and population characteristics.</description><identifier>ISSN: 2095-0195</identifier><identifier>EISSN: 2095-0209</identifier><identifier>DOI: 10.1007/s11707-013-0361-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; CE-1 ; crater detection algorithm (CDA) ; curvature ; digital elevation model ; Earth and Environmental Science ; Earth Sciences ; Elevation ; Geology ; Hough Transform ; Hough变换 ; image analysis ; Moon ; Normal distribution ; Population characteristics ; Research Article ; Studies ; 二值图像 ; 基础 ; 撞击坑 ; 数字高程模型 ; 数据检测 ; 月球表面 ; 陨石坑</subject><ispartof>Frontiers of earth science, 2013-12, Vol.7 (4), p.456-464</ispartof><rights>Copyright reserved, 2014, Higher Education Press and Springer-Verlag Berlin Heidelberg</rights><rights>Higher Education Press and Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a438t-ed76304ea10d41f84c96b1104643b54995e6f8a5e8c13cadb4a52b3fc66fa8b63</citedby><cites>FETCH-LOGICAL-a438t-ed76304ea10d41f84c96b1104643b54995e6f8a5e8c13cadb4a52b3fc66fa8b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71237X/71237X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11707-013-0361-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11707-013-0361-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Luo, Lei</creatorcontrib><creatorcontrib>Mu, Lingli</creatorcontrib><creatorcontrib>Wang, Xinyuan</creatorcontrib><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Ji, Wei</creatorcontrib><creatorcontrib>Zhao, Jinjin</creatorcontrib><creatorcontrib>Cai, Heng</creatorcontrib><title>Global detection of large lunar craters based on the CE-1 digital elevation model</title><title>Frontiers of earth science</title><addtitle>Front Earth Sci</addtitle><addtitle>Front. Earth Sci</addtitle><addtitle>Frontiers of Earth Science</addtitle><description>Craters, one of the most significant features of the lunar surface, have been widely researched because they offer us the relative age of the surface unit as well as crucial geological information. Research on crater detec- tion algorithms (CDAs) of the Moon and other planetary bodies has concentrated on detecting them from imagery data, but the computational cost of detecting large craters using images makes these CDAs impractical. This paper presents a new approach to crater detection that utilizes a digital elevation model instead of images; this enables fully automatic global detection of large craters. Craters were delineated by terrain attributes, and then thresholding maps of terrain attributes were used to transform topographic data into a binary image, finally craters were detected by using the Hough Transform from the binary image. By using the proposed algorithm, we produced a catalog of all craters ≥ 10 km in diameter on the lunar surface and analyzed their distribution and population characteristics.</description><subject>Algorithms</subject><subject>CE-1</subject><subject>crater detection algorithm (CDA)</subject><subject>curvature</subject><subject>digital elevation model</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Elevation</subject><subject>Geology</subject><subject>Hough Transform</subject><subject>Hough变换</subject><subject>image analysis</subject><subject>Moon</subject><subject>Normal distribution</subject><subject>Population characteristics</subject><subject>Research Article</subject><subject>Studies</subject><subject>二值图像</subject><subject>基础</subject><subject>撞击坑</subject><subject>数字高程模型</subject><subject>数据检测</subject><subject>月球表面</subject><subject>陨石坑</subject><issn>2095-0195</issn><issn>2095-0209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kF9LwzAUxYsoKNMP4JMRn6v3NmnaPsqYf2AgonsOaXvTdXTNTDrBb29mp_i0QJILOb-be04UXSLcIkB25xEzyGJAHgOXGPOj6CyBIo0hnMe_NRbpaXTh_QrCyrOwxVn0-tjZUnespoGqobU9s4Z12jXEum2vHaucHsh5VmpPNQvvw5LYdBYjq9umHQJKHX3qH3Rta-rOoxOjO08X-3sSLR5m79OneP7y-Dy9n8da8HyIqc4kB0EaoRZoclEVskQEIQUvU1EUKUmT65TyCnml61LoNCm5qaQ0Oi8ln0Q3Y9-Nsx9b8oNa2a3rw5cKhQzmEAoeVDiqKme9d2TUxrVr7b4UgtqFp8bwVAhP7cJTOyYZGR-0fUPuX-cDUD5Cy7ZZkqN648h7ZZzthzYEeBC9GlGjrdKNa71avCWAAgBTIVEExfXexdL2zUcY6s-GyFFimhX8G3xalnI</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Luo, Lei</creator><creator>Mu, Lingli</creator><creator>Wang, Xinyuan</creator><creator>Li, Chao</creator><creator>Ji, Wei</creator><creator>Zhao, Jinjin</creator><creator>Cai, Heng</creator><general>Springer-Verlag</general><general>Higher Education Press</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20131201</creationdate><title>Global detection of large lunar craters based on the CE-1 digital elevation model</title><author>Luo, Lei ; Mu, Lingli ; Wang, Xinyuan ; Li, Chao ; Ji, Wei ; Zhao, Jinjin ; Cai, Heng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a438t-ed76304ea10d41f84c96b1104643b54995e6f8a5e8c13cadb4a52b3fc66fa8b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>CE-1</topic><topic>crater detection algorithm (CDA)</topic><topic>curvature</topic><topic>digital elevation model</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Elevation</topic><topic>Geology</topic><topic>Hough Transform</topic><topic>Hough变换</topic><topic>image analysis</topic><topic>Moon</topic><topic>Normal distribution</topic><topic>Population characteristics</topic><topic>Research Article</topic><topic>Studies</topic><topic>二值图像</topic><topic>基础</topic><topic>撞击坑</topic><topic>数字高程模型</topic><topic>数据检测</topic><topic>月球表面</topic><topic>陨石坑</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Lei</creatorcontrib><creatorcontrib>Mu, Lingli</creatorcontrib><creatorcontrib>Wang, Xinyuan</creatorcontrib><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Ji, Wei</creatorcontrib><creatorcontrib>Zhao, Jinjin</creatorcontrib><creatorcontrib>Cai, Heng</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Frontiers of earth science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Lei</au><au>Mu, Lingli</au><au>Wang, Xinyuan</au><au>Li, Chao</au><au>Ji, Wei</au><au>Zhao, Jinjin</au><au>Cai, Heng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global detection of large lunar craters based on the CE-1 digital elevation model</atitle><jtitle>Frontiers of earth science</jtitle><stitle>Front Earth Sci</stitle><stitle>Front. Earth Sci</stitle><addtitle>Frontiers of Earth Science</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>7</volume><issue>4</issue><spage>456</spage><epage>464</epage><pages>456-464</pages><issn>2095-0195</issn><eissn>2095-0209</eissn><abstract>Craters, one of the most significant features of the lunar surface, have been widely researched because they offer us the relative age of the surface unit as well as crucial geological information. Research on crater detec- tion algorithms (CDAs) of the Moon and other planetary bodies has concentrated on detecting them from imagery data, but the computational cost of detecting large craters using images makes these CDAs impractical. This paper presents a new approach to crater detection that utilizes a digital elevation model instead of images; this enables fully automatic global detection of large craters. Craters were delineated by terrain attributes, and then thresholding maps of terrain attributes were used to transform topographic data into a binary image, finally craters were detected by using the Hough Transform from the binary image. By using the proposed algorithm, we produced a catalog of all craters ≥ 10 km in diameter on the lunar surface and analyzed their distribution and population characteristics.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s11707-013-0361-3</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2095-0195
ispartof Frontiers of earth science, 2013-12, Vol.7 (4), p.456-464
issn 2095-0195
2095-0209
language eng
recordid cdi_proquest_journals_1460841093
source Springer Online Journals Complete
subjects Algorithms
CE-1
crater detection algorithm (CDA)
curvature
digital elevation model
Earth and Environmental Science
Earth Sciences
Elevation
Geology
Hough Transform
Hough变换
image analysis
Moon
Normal distribution
Population characteristics
Research Article
Studies
二值图像
基础
撞击坑
数字高程模型
数据检测
月球表面
陨石坑
title Global detection of large lunar craters based on the CE-1 digital elevation model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T06%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20detection%20of%20large%20lunar%20craters%20based%20on%20the%20CE-1%20digital%20elevation%20model&rft.jtitle=Frontiers%20of%20earth%20science&rft.au=Luo,%20Lei&rft.date=2013-12-01&rft.volume=7&rft.issue=4&rft.spage=456&rft.epage=464&rft.pages=456-464&rft.issn=2095-0195&rft.eissn=2095-0209&rft_id=info:doi/10.1007/s11707-013-0361-3&rft_dat=%3Cproquest_cross%3E3134995941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1460841093&rft_id=info:pmid/&rft_cqvip_id=48161579&rfr_iscdi=true