Global detection of large lunar craters based on the CE-1 digital elevation model
Craters, one of the most significant features of the lunar surface, have been widely researched because they offer us the relative age of the surface unit as well as crucial geological information. Research on crater detec- tion algorithms (CDAs) of the Moon and other planetary bodies has concentrat...
Gespeichert in:
Veröffentlicht in: | Frontiers of earth science 2013-12, Vol.7 (4), p.456-464 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 464 |
---|---|
container_issue | 4 |
container_start_page | 456 |
container_title | Frontiers of earth science |
container_volume | 7 |
creator | Luo, Lei Mu, Lingli Wang, Xinyuan Li, Chao Ji, Wei Zhao, Jinjin Cai, Heng |
description | Craters, one of the most significant features of the lunar surface, have been widely researched because they offer us the relative age of the surface unit as well as crucial geological information. Research on crater detec- tion algorithms (CDAs) of the Moon and other planetary bodies has concentrated on detecting them from imagery data, but the computational cost of detecting large craters using images makes these CDAs impractical. This paper presents a new approach to crater detection that utilizes a digital elevation model instead of images; this enables fully automatic global detection of large craters. Craters were delineated by terrain attributes, and then thresholding maps of terrain attributes were used to transform topographic data into a binary image, finally craters were detected by using the Hough Transform from the binary image. By using the proposed algorithm, we produced a catalog of all craters ≥ 10 km in diameter on the lunar surface and analyzed their distribution and population characteristics. |
doi_str_mv | 10.1007/s11707-013-0361-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1460841093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>48161579</cqvip_id><sourcerecordid>3134995941</sourcerecordid><originalsourceid>FETCH-LOGICAL-a438t-ed76304ea10d41f84c96b1104643b54995e6f8a5e8c13cadb4a52b3fc66fa8b63</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYsoKNMP4JMRn6v3NmnaPsqYf2AgonsOaXvTdXTNTDrBb29mp_i0QJILOb-be04UXSLcIkB25xEzyGJAHgOXGPOj6CyBIo0hnMe_NRbpaXTh_QrCyrOwxVn0-tjZUnespoGqobU9s4Z12jXEum2vHaucHsh5VmpPNQvvw5LYdBYjq9umHQJKHX3qH3Rta-rOoxOjO08X-3sSLR5m79OneP7y-Dy9n8da8HyIqc4kB0EaoRZoclEVskQEIQUvU1EUKUmT65TyCnml61LoNCm5qaQ0Oi8ln0Q3Y9-Nsx9b8oNa2a3rw5cKhQzmEAoeVDiqKme9d2TUxrVr7b4UgtqFp8bwVAhP7cJTOyYZGR-0fUPuX-cDUD5Cy7ZZkqN648h7ZZzthzYEeBC9GlGjrdKNa71avCWAAgBTIVEExfXexdL2zUcY6s-GyFFimhX8G3xalnI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1460841093</pqid></control><display><type>article</type><title>Global detection of large lunar craters based on the CE-1 digital elevation model</title><source>Springer Online Journals Complete</source><creator>Luo, Lei ; Mu, Lingli ; Wang, Xinyuan ; Li, Chao ; Ji, Wei ; Zhao, Jinjin ; Cai, Heng</creator><creatorcontrib>Luo, Lei ; Mu, Lingli ; Wang, Xinyuan ; Li, Chao ; Ji, Wei ; Zhao, Jinjin ; Cai, Heng</creatorcontrib><description>Craters, one of the most significant features of the lunar surface, have been widely researched because they offer us the relative age of the surface unit as well as crucial geological information. Research on crater detec- tion algorithms (CDAs) of the Moon and other planetary bodies has concentrated on detecting them from imagery data, but the computational cost of detecting large craters using images makes these CDAs impractical. This paper presents a new approach to crater detection that utilizes a digital elevation model instead of images; this enables fully automatic global detection of large craters. Craters were delineated by terrain attributes, and then thresholding maps of terrain attributes were used to transform topographic data into a binary image, finally craters were detected by using the Hough Transform from the binary image. By using the proposed algorithm, we produced a catalog of all craters ≥ 10 km in diameter on the lunar surface and analyzed their distribution and population characteristics.</description><identifier>ISSN: 2095-0195</identifier><identifier>EISSN: 2095-0209</identifier><identifier>DOI: 10.1007/s11707-013-0361-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; CE-1 ; crater detection algorithm (CDA) ; curvature ; digital elevation model ; Earth and Environmental Science ; Earth Sciences ; Elevation ; Geology ; Hough Transform ; Hough变换 ; image analysis ; Moon ; Normal distribution ; Population characteristics ; Research Article ; Studies ; 二值图像 ; 基础 ; 撞击坑 ; 数字高程模型 ; 数据检测 ; 月球表面 ; 陨石坑</subject><ispartof>Frontiers of earth science, 2013-12, Vol.7 (4), p.456-464</ispartof><rights>Copyright reserved, 2014, Higher Education Press and Springer-Verlag Berlin Heidelberg</rights><rights>Higher Education Press and Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a438t-ed76304ea10d41f84c96b1104643b54995e6f8a5e8c13cadb4a52b3fc66fa8b63</citedby><cites>FETCH-LOGICAL-a438t-ed76304ea10d41f84c96b1104643b54995e6f8a5e8c13cadb4a52b3fc66fa8b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71237X/71237X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11707-013-0361-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11707-013-0361-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Luo, Lei</creatorcontrib><creatorcontrib>Mu, Lingli</creatorcontrib><creatorcontrib>Wang, Xinyuan</creatorcontrib><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Ji, Wei</creatorcontrib><creatorcontrib>Zhao, Jinjin</creatorcontrib><creatorcontrib>Cai, Heng</creatorcontrib><title>Global detection of large lunar craters based on the CE-1 digital elevation model</title><title>Frontiers of earth science</title><addtitle>Front Earth Sci</addtitle><addtitle>Front. Earth Sci</addtitle><addtitle>Frontiers of Earth Science</addtitle><description>Craters, one of the most significant features of the lunar surface, have been widely researched because they offer us the relative age of the surface unit as well as crucial geological information. Research on crater detec- tion algorithms (CDAs) of the Moon and other planetary bodies has concentrated on detecting them from imagery data, but the computational cost of detecting large craters using images makes these CDAs impractical. This paper presents a new approach to crater detection that utilizes a digital elevation model instead of images; this enables fully automatic global detection of large craters. Craters were delineated by terrain attributes, and then thresholding maps of terrain attributes were used to transform topographic data into a binary image, finally craters were detected by using the Hough Transform from the binary image. By using the proposed algorithm, we produced a catalog of all craters ≥ 10 km in diameter on the lunar surface and analyzed their distribution and population characteristics.</description><subject>Algorithms</subject><subject>CE-1</subject><subject>crater detection algorithm (CDA)</subject><subject>curvature</subject><subject>digital elevation model</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Elevation</subject><subject>Geology</subject><subject>Hough Transform</subject><subject>Hough变换</subject><subject>image analysis</subject><subject>Moon</subject><subject>Normal distribution</subject><subject>Population characteristics</subject><subject>Research Article</subject><subject>Studies</subject><subject>二值图像</subject><subject>基础</subject><subject>撞击坑</subject><subject>数字高程模型</subject><subject>数据检测</subject><subject>月球表面</subject><subject>陨石坑</subject><issn>2095-0195</issn><issn>2095-0209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kF9LwzAUxYsoKNMP4JMRn6v3NmnaPsqYf2AgonsOaXvTdXTNTDrBb29mp_i0QJILOb-be04UXSLcIkB25xEzyGJAHgOXGPOj6CyBIo0hnMe_NRbpaXTh_QrCyrOwxVn0-tjZUnespoGqobU9s4Z12jXEum2vHaucHsh5VmpPNQvvw5LYdBYjq9umHQJKHX3qH3Rta-rOoxOjO08X-3sSLR5m79OneP7y-Dy9n8da8HyIqc4kB0EaoRZoclEVskQEIQUvU1EUKUmT65TyCnml61LoNCm5qaQ0Oi8ln0Q3Y9-Nsx9b8oNa2a3rw5cKhQzmEAoeVDiqKme9d2TUxrVr7b4UgtqFp8bwVAhP7cJTOyYZGR-0fUPuX-cDUD5Cy7ZZkqN648h7ZZzthzYEeBC9GlGjrdKNa71avCWAAgBTIVEExfXexdL2zUcY6s-GyFFimhX8G3xalnI</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Luo, Lei</creator><creator>Mu, Lingli</creator><creator>Wang, Xinyuan</creator><creator>Li, Chao</creator><creator>Ji, Wei</creator><creator>Zhao, Jinjin</creator><creator>Cai, Heng</creator><general>Springer-Verlag</general><general>Higher Education Press</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20131201</creationdate><title>Global detection of large lunar craters based on the CE-1 digital elevation model</title><author>Luo, Lei ; Mu, Lingli ; Wang, Xinyuan ; Li, Chao ; Ji, Wei ; Zhao, Jinjin ; Cai, Heng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a438t-ed76304ea10d41f84c96b1104643b54995e6f8a5e8c13cadb4a52b3fc66fa8b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>CE-1</topic><topic>crater detection algorithm (CDA)</topic><topic>curvature</topic><topic>digital elevation model</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Elevation</topic><topic>Geology</topic><topic>Hough Transform</topic><topic>Hough变换</topic><topic>image analysis</topic><topic>Moon</topic><topic>Normal distribution</topic><topic>Population characteristics</topic><topic>Research Article</topic><topic>Studies</topic><topic>二值图像</topic><topic>基础</topic><topic>撞击坑</topic><topic>数字高程模型</topic><topic>数据检测</topic><topic>月球表面</topic><topic>陨石坑</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Lei</creatorcontrib><creatorcontrib>Mu, Lingli</creatorcontrib><creatorcontrib>Wang, Xinyuan</creatorcontrib><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Ji, Wei</creatorcontrib><creatorcontrib>Zhao, Jinjin</creatorcontrib><creatorcontrib>Cai, Heng</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Frontiers of earth science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Lei</au><au>Mu, Lingli</au><au>Wang, Xinyuan</au><au>Li, Chao</au><au>Ji, Wei</au><au>Zhao, Jinjin</au><au>Cai, Heng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global detection of large lunar craters based on the CE-1 digital elevation model</atitle><jtitle>Frontiers of earth science</jtitle><stitle>Front Earth Sci</stitle><stitle>Front. Earth Sci</stitle><addtitle>Frontiers of Earth Science</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>7</volume><issue>4</issue><spage>456</spage><epage>464</epage><pages>456-464</pages><issn>2095-0195</issn><eissn>2095-0209</eissn><abstract>Craters, one of the most significant features of the lunar surface, have been widely researched because they offer us the relative age of the surface unit as well as crucial geological information. Research on crater detec- tion algorithms (CDAs) of the Moon and other planetary bodies has concentrated on detecting them from imagery data, but the computational cost of detecting large craters using images makes these CDAs impractical. This paper presents a new approach to crater detection that utilizes a digital elevation model instead of images; this enables fully automatic global detection of large craters. Craters were delineated by terrain attributes, and then thresholding maps of terrain attributes were used to transform topographic data into a binary image, finally craters were detected by using the Hough Transform from the binary image. By using the proposed algorithm, we produced a catalog of all craters ≥ 10 km in diameter on the lunar surface and analyzed their distribution and population characteristics.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s11707-013-0361-3</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-0195 |
ispartof | Frontiers of earth science, 2013-12, Vol.7 (4), p.456-464 |
issn | 2095-0195 2095-0209 |
language | eng |
recordid | cdi_proquest_journals_1460841093 |
source | Springer Online Journals Complete |
subjects | Algorithms CE-1 crater detection algorithm (CDA) curvature digital elevation model Earth and Environmental Science Earth Sciences Elevation Geology Hough Transform Hough变换 image analysis Moon Normal distribution Population characteristics Research Article Studies 二值图像 基础 撞击坑 数字高程模型 数据检测 月球表面 陨石坑 |
title | Global detection of large lunar craters based on the CE-1 digital elevation model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T06%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20detection%20of%20large%20lunar%20craters%20based%20on%20the%20CE-1%20digital%20elevation%20model&rft.jtitle=Frontiers%20of%20earth%20science&rft.au=Luo,%20Lei&rft.date=2013-12-01&rft.volume=7&rft.issue=4&rft.spage=456&rft.epage=464&rft.pages=456-464&rft.issn=2095-0195&rft.eissn=2095-0209&rft_id=info:doi/10.1007/s11707-013-0361-3&rft_dat=%3Cproquest_cross%3E3134995941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1460841093&rft_id=info:pmid/&rft_cqvip_id=48161579&rfr_iscdi=true |