High Temporal Resolution Land Use/Land Cover Change from 1984 to 2010 of the Little River Watershed, Tennessee, Investigated Using Landsat and Google Earth Images

The Little River Watershed (LRW) in Tennessee experienced rapid land use/land cover (LULC) change in recent decades. However, a detailed long-term record of LULC change is still lacking. Here, we examined the pattern of LULC change from 1984 to 2010 in a roughly 2-year interval using the Maximum Lik...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Southeastern geographer 2013-09, Vol.53 (3), p.250-266
Hauptverfasser: ZHU, CHUNHAO, LI, YINGKUI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 266
container_issue 3
container_start_page 250
container_title Southeastern geographer
container_volume 53
creator ZHU, CHUNHAO
LI, YINGKUI
description The Little River Watershed (LRW) in Tennessee experienced rapid land use/land cover (LULC) change in recent decades. However, a detailed long-term record of LULC change is still lacking. Here, we examined the pattern of LULC change from 1984 to 2010 in a roughly 2-year interval using the Maximum Likelihood Classification (MLC) of Landsat TM/ETM+ images. The accuracy of the classification was assessed by comparing classified LULC classes with their corresponding classes identified from Google Earth high resolution imagery (representing “ground reference data”). Change detection of classified LULC maps indicated that urban areas (residential and commercial lands) and forest increased in 1984–2010 from 6.3 percent to 11.1 percent and from 65.0 percent to 69.5 percent, respectively. In contrast, agricultural land decreased from 28.3 percent to 18.9 percent. This detailed long-term record of LULC change would provide valuable information for local land-use planning and management in assessing the potential impacts of LULC change in this critical watershed.
doi_str_mv 10.1353/sgo.2013.0025
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1459582518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A348645858</galeid><jstor_id>26233648</jstor_id><sourcerecordid>A348645858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-191763073d18265566c374b1345013b9a3bb619d83ee524a1d49cfdc7fc7cad03</originalsourceid><addsrcrecordid>eNqNkl9r2zAUxc3YYFm3xz0OBHsa1Klk_bH1WEKXBgKFtGV7M4p8rSjYUmbJZfs6-6ST27ISCGPoQUL3d8-5HG6WfSR4TiinF8H4eYEJnWNc8FfZjHAmcyEL-TqbYUyrnArx_W32LoR9IiTncpb9vrZmh-6gP_hBdWgDwXdjtN6htXINug9w8fhY-AcY0GKnnAHUDr5HRFYMRY-SI0a-RXEHaG1j7ABt7AR_UxGGsIPmPOk7ByEAnKOVe4AQrUnFSd468-gUVESTz9J7kxSu1BB3aNUrA-F99qZVXYAPz_dZdv_16m5xna9vlqvF5TrXHPOYE0lKQXFJG1IVgnMhNC3ZllDGUyZbqeh2K4hsKgrAC6ZIw6RuG122utSqwfQs-_ykexj8jzENWe_9OLhkWRPGJa8KTqoXyqgOautaHwelext0fUlZJRiv-ETlJygDDlLK3kFr0_cRPz_Bp9NAb_XJhi9HDYmJ8DMaNYZQr243_81Wy_W_Bn9mte86MFCnwBc3xzz7G9oedOzHAC-58QLjsqxvp02cFpFQitPq0dT26altH6If6sNgezX8qguRaoJV9A90mNo3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1459582518</pqid></control><display><type>article</type><title>High Temporal Resolution Land Use/Land Cover Change from 1984 to 2010 of the Little River Watershed, Tennessee, Investigated Using Landsat and Google Earth Images</title><source>JSTOR Archive Collection A-Z Listing</source><creator>ZHU, CHUNHAO ; LI, YINGKUI</creator><creatorcontrib>ZHU, CHUNHAO ; LI, YINGKUI</creatorcontrib><description>The Little River Watershed (LRW) in Tennessee experienced rapid land use/land cover (LULC) change in recent decades. However, a detailed long-term record of LULC change is still lacking. Here, we examined the pattern of LULC change from 1984 to 2010 in a roughly 2-year interval using the Maximum Likelihood Classification (MLC) of Landsat TM/ETM+ images. The accuracy of the classification was assessed by comparing classified LULC classes with their corresponding classes identified from Google Earth high resolution imagery (representing “ground reference data”). Change detection of classified LULC maps indicated that urban areas (residential and commercial lands) and forest increased in 1984–2010 from 6.3 percent to 11.1 percent and from 65.0 percent to 69.5 percent, respectively. In contrast, agricultural land decreased from 28.3 percent to 18.9 percent. This detailed long-term record of LULC change would provide valuable information for local land-use planning and management in assessing the potential impacts of LULC change in this critical watershed.</description><identifier>ISSN: 0038-366X</identifier><identifier>EISSN: 1549-6929</identifier><identifier>DOI: 10.1353/sgo.2013.0025</identifier><language>eng</language><publisher>Chapel Hill: Journal of the Southeastern Division, Association of American Geographers</publisher><subject>Accuracy ; Aerial photography ; Agricultural land ; Aluminum industry ; Classification ; Commercial forests ; Company legal issue ; Earth ; Earth resources technology satellites ; Forests ; Image classification ; Investigations ; Land use ; Land use controls ; Land use planning ; Landsat ; Landsat satellites ; National parks ; Neural networks ; PART I: PAPERS ; Population growth ; Remote sensing ; Rivers ; Search engines ; Urban areas ; Watersheds</subject><ispartof>Southeastern geographer, 2013-09, Vol.53 (3), p.250-266</ispartof><rights>2013 Southeastern Division of the Association of American Geographers</rights><rights>Copyright © The Southeastern Division, Association of American Geographers.</rights><rights>COPYRIGHT 2013 University of North Carolina Press</rights><rights>Copyright The University of North Carolina Press Fall 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-191763073d18265566c374b1345013b9a3bb619d83ee524a1d49cfdc7fc7cad03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26233648$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26233648$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27922,27923,58015,58248</link.rule.ids></links><search><creatorcontrib>ZHU, CHUNHAO</creatorcontrib><creatorcontrib>LI, YINGKUI</creatorcontrib><title>High Temporal Resolution Land Use/Land Cover Change from 1984 to 2010 of the Little River Watershed, Tennessee, Investigated Using Landsat and Google Earth Images</title><title>Southeastern geographer</title><addtitle>Southeastern Geographer</addtitle><description>The Little River Watershed (LRW) in Tennessee experienced rapid land use/land cover (LULC) change in recent decades. However, a detailed long-term record of LULC change is still lacking. Here, we examined the pattern of LULC change from 1984 to 2010 in a roughly 2-year interval using the Maximum Likelihood Classification (MLC) of Landsat TM/ETM+ images. The accuracy of the classification was assessed by comparing classified LULC classes with their corresponding classes identified from Google Earth high resolution imagery (representing “ground reference data”). Change detection of classified LULC maps indicated that urban areas (residential and commercial lands) and forest increased in 1984–2010 from 6.3 percent to 11.1 percent and from 65.0 percent to 69.5 percent, respectively. In contrast, agricultural land decreased from 28.3 percent to 18.9 percent. This detailed long-term record of LULC change would provide valuable information for local land-use planning and management in assessing the potential impacts of LULC change in this critical watershed.</description><subject>Accuracy</subject><subject>Aerial photography</subject><subject>Agricultural land</subject><subject>Aluminum industry</subject><subject>Classification</subject><subject>Commercial forests</subject><subject>Company legal issue</subject><subject>Earth</subject><subject>Earth resources technology satellites</subject><subject>Forests</subject><subject>Image classification</subject><subject>Investigations</subject><subject>Land use</subject><subject>Land use controls</subject><subject>Land use planning</subject><subject>Landsat</subject><subject>Landsat satellites</subject><subject>National parks</subject><subject>Neural networks</subject><subject>PART I: PAPERS</subject><subject>Population growth</subject><subject>Remote sensing</subject><subject>Rivers</subject><subject>Search engines</subject><subject>Urban areas</subject><subject>Watersheds</subject><issn>0038-366X</issn><issn>1549-6929</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkl9r2zAUxc3YYFm3xz0OBHsa1Klk_bH1WEKXBgKFtGV7M4p8rSjYUmbJZfs6-6ST27ISCGPoQUL3d8-5HG6WfSR4TiinF8H4eYEJnWNc8FfZjHAmcyEL-TqbYUyrnArx_W32LoR9IiTncpb9vrZmh-6gP_hBdWgDwXdjtN6htXINug9w8fhY-AcY0GKnnAHUDr5HRFYMRY-SI0a-RXEHaG1j7ABt7AR_UxGGsIPmPOk7ByEAnKOVe4AQrUnFSd468-gUVESTz9J7kxSu1BB3aNUrA-F99qZVXYAPz_dZdv_16m5xna9vlqvF5TrXHPOYE0lKQXFJG1IVgnMhNC3ZllDGUyZbqeh2K4hsKgrAC6ZIw6RuG122utSqwfQs-_ykexj8jzENWe_9OLhkWRPGJa8KTqoXyqgOautaHwelext0fUlZJRiv-ETlJygDDlLK3kFr0_cRPz_Bp9NAb_XJhi9HDYmJ8DMaNYZQr243_81Wy_W_Bn9mte86MFCnwBc3xzz7G9oedOzHAC-58QLjsqxvp02cFpFQitPq0dT26altH6If6sNgezX8qguRaoJV9A90mNo3</recordid><startdate>20130922</startdate><enddate>20130922</enddate><creator>ZHU, CHUNHAO</creator><creator>LI, YINGKUI</creator><general>Journal of the Southeastern Division, Association of American Geographers</general><general>The University of North Carolina Press</general><general>University of North Carolina Press</general><scope>8GL</scope><scope>ISR</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20130922</creationdate><title>High Temporal Resolution Land Use/Land Cover Change from 1984 to 2010 of the Little River Watershed, Tennessee, Investigated Using Landsat and Google Earth Images</title><author>ZHU, CHUNHAO ; LI, YINGKUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-191763073d18265566c374b1345013b9a3bb619d83ee524a1d49cfdc7fc7cad03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Aerial photography</topic><topic>Agricultural land</topic><topic>Aluminum industry</topic><topic>Classification</topic><topic>Commercial forests</topic><topic>Company legal issue</topic><topic>Earth</topic><topic>Earth resources technology satellites</topic><topic>Forests</topic><topic>Image classification</topic><topic>Investigations</topic><topic>Land use</topic><topic>Land use controls</topic><topic>Land use planning</topic><topic>Landsat</topic><topic>Landsat satellites</topic><topic>National parks</topic><topic>Neural networks</topic><topic>PART I: PAPERS</topic><topic>Population growth</topic><topic>Remote sensing</topic><topic>Rivers</topic><topic>Search engines</topic><topic>Urban areas</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZHU, CHUNHAO</creatorcontrib><creatorcontrib>LI, YINGKUI</creatorcontrib><collection>Gale In Context: High School</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Southeastern geographer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHU, CHUNHAO</au><au>LI, YINGKUI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Temporal Resolution Land Use/Land Cover Change from 1984 to 2010 of the Little River Watershed, Tennessee, Investigated Using Landsat and Google Earth Images</atitle><jtitle>Southeastern geographer</jtitle><addtitle>Southeastern Geographer</addtitle><date>2013-09-22</date><risdate>2013</risdate><volume>53</volume><issue>3</issue><spage>250</spage><epage>266</epage><pages>250-266</pages><issn>0038-366X</issn><eissn>1549-6929</eissn><abstract>The Little River Watershed (LRW) in Tennessee experienced rapid land use/land cover (LULC) change in recent decades. However, a detailed long-term record of LULC change is still lacking. Here, we examined the pattern of LULC change from 1984 to 2010 in a roughly 2-year interval using the Maximum Likelihood Classification (MLC) of Landsat TM/ETM+ images. The accuracy of the classification was assessed by comparing classified LULC classes with their corresponding classes identified from Google Earth high resolution imagery (representing “ground reference data”). Change detection of classified LULC maps indicated that urban areas (residential and commercial lands) and forest increased in 1984–2010 from 6.3 percent to 11.1 percent and from 65.0 percent to 69.5 percent, respectively. In contrast, agricultural land decreased from 28.3 percent to 18.9 percent. This detailed long-term record of LULC change would provide valuable information for local land-use planning and management in assessing the potential impacts of LULC change in this critical watershed.</abstract><cop>Chapel Hill</cop><pub>Journal of the Southeastern Division, Association of American Geographers</pub><doi>10.1353/sgo.2013.0025</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-366X
ispartof Southeastern geographer, 2013-09, Vol.53 (3), p.250-266
issn 0038-366X
1549-6929
language eng
recordid cdi_proquest_journals_1459582518
source JSTOR Archive Collection A-Z Listing
subjects Accuracy
Aerial photography
Agricultural land
Aluminum industry
Classification
Commercial forests
Company legal issue
Earth
Earth resources technology satellites
Forests
Image classification
Investigations
Land use
Land use controls
Land use planning
Landsat
Landsat satellites
National parks
Neural networks
PART I: PAPERS
Population growth
Remote sensing
Rivers
Search engines
Urban areas
Watersheds
title High Temporal Resolution Land Use/Land Cover Change from 1984 to 2010 of the Little River Watershed, Tennessee, Investigated Using Landsat and Google Earth Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A20%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Temporal%20Resolution%20Land%20Use/Land%20Cover%20Change%20from%201984%20to%202010%20of%20the%20Little%20River%20Watershed,%20Tennessee,%20Investigated%20Using%20Landsat%20and%20Google%20Earth%20Images&rft.jtitle=Southeastern%20geographer&rft.au=ZHU,%20CHUNHAO&rft.date=2013-09-22&rft.volume=53&rft.issue=3&rft.spage=250&rft.epage=266&rft.pages=250-266&rft.issn=0038-366X&rft.eissn=1549-6929&rft_id=info:doi/10.1353/sgo.2013.0025&rft_dat=%3Cgale_proqu%3EA348645858%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1459582518&rft_id=info:pmid/&rft_galeid=A348645858&rft_jstor_id=26233648&rfr_iscdi=true