High Temporal Resolution Land Use/Land Cover Change from 1984 to 2010 of the Little River Watershed, Tennessee, Investigated Using Landsat and Google Earth Images
The Little River Watershed (LRW) in Tennessee experienced rapid land use/land cover (LULC) change in recent decades. However, a detailed long-term record of LULC change is still lacking. Here, we examined the pattern of LULC change from 1984 to 2010 in a roughly 2-year interval using the Maximum Lik...
Gespeichert in:
Veröffentlicht in: | Southeastern geographer 2013-09, Vol.53 (3), p.250-266 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 266 |
---|---|
container_issue | 3 |
container_start_page | 250 |
container_title | Southeastern geographer |
container_volume | 53 |
creator | ZHU, CHUNHAO LI, YINGKUI |
description | The Little River Watershed (LRW) in Tennessee experienced rapid land use/land cover (LULC) change in recent decades. However, a detailed long-term record of LULC change is still lacking. Here, we examined the pattern of LULC change from 1984 to 2010 in a roughly 2-year interval using the Maximum Likelihood Classification (MLC) of Landsat TM/ETM+ images. The accuracy of the classification was assessed by comparing classified LULC classes with their corresponding classes identified from Google Earth high resolution imagery (representing “ground reference data”). Change detection of classified LULC maps indicated that urban areas (residential and commercial lands) and forest increased in 1984–2010 from 6.3 percent to 11.1 percent and from 65.0 percent to 69.5 percent, respectively. In contrast, agricultural land decreased from 28.3 percent to 18.9 percent. This detailed long-term record of LULC change would provide valuable information for local land-use planning and management in assessing the potential impacts of LULC change in this critical watershed. |
doi_str_mv | 10.1353/sgo.2013.0025 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1459582518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A348645858</galeid><jstor_id>26233648</jstor_id><sourcerecordid>A348645858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-191763073d18265566c374b1345013b9a3bb619d83ee524a1d49cfdc7fc7cad03</originalsourceid><addsrcrecordid>eNqNkl9r2zAUxc3YYFm3xz0OBHsa1Klk_bH1WEKXBgKFtGV7M4p8rSjYUmbJZfs6-6ST27ISCGPoQUL3d8-5HG6WfSR4TiinF8H4eYEJnWNc8FfZjHAmcyEL-TqbYUyrnArx_W32LoR9IiTncpb9vrZmh-6gP_hBdWgDwXdjtN6htXINug9w8fhY-AcY0GKnnAHUDr5HRFYMRY-SI0a-RXEHaG1j7ABt7AR_UxGGsIPmPOk7ByEAnKOVe4AQrUnFSd468-gUVESTz9J7kxSu1BB3aNUrA-F99qZVXYAPz_dZdv_16m5xna9vlqvF5TrXHPOYE0lKQXFJG1IVgnMhNC3ZllDGUyZbqeh2K4hsKgrAC6ZIw6RuG122utSqwfQs-_ykexj8jzENWe_9OLhkWRPGJa8KTqoXyqgOautaHwelext0fUlZJRiv-ETlJygDDlLK3kFr0_cRPz_Bp9NAb_XJhi9HDYmJ8DMaNYZQr243_81Wy_W_Bn9mte86MFCnwBc3xzz7G9oedOzHAC-58QLjsqxvp02cFpFQitPq0dT26altH6If6sNgezX8qguRaoJV9A90mNo3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1459582518</pqid></control><display><type>article</type><title>High Temporal Resolution Land Use/Land Cover Change from 1984 to 2010 of the Little River Watershed, Tennessee, Investigated Using Landsat and Google Earth Images</title><source>JSTOR Archive Collection A-Z Listing</source><creator>ZHU, CHUNHAO ; LI, YINGKUI</creator><creatorcontrib>ZHU, CHUNHAO ; LI, YINGKUI</creatorcontrib><description>The Little River Watershed (LRW) in Tennessee experienced rapid land use/land cover (LULC) change in recent decades. However, a detailed long-term record of LULC change is still lacking. Here, we examined the pattern of LULC change from 1984 to 2010 in a roughly 2-year interval using the Maximum Likelihood Classification (MLC) of Landsat TM/ETM+ images. The accuracy of the classification was assessed by comparing classified LULC classes with their corresponding classes identified from Google Earth high resolution imagery (representing “ground reference data”). Change detection of classified LULC maps indicated that urban areas (residential and commercial lands) and forest increased in 1984–2010 from 6.3 percent to 11.1 percent and from 65.0 percent to 69.5 percent, respectively. In contrast, agricultural land decreased from 28.3 percent to 18.9 percent. This detailed long-term record of LULC change would provide valuable information for local land-use planning and management in assessing the potential impacts of LULC change in this critical watershed.</description><identifier>ISSN: 0038-366X</identifier><identifier>EISSN: 1549-6929</identifier><identifier>DOI: 10.1353/sgo.2013.0025</identifier><language>eng</language><publisher>Chapel Hill: Journal of the Southeastern Division, Association of American Geographers</publisher><subject>Accuracy ; Aerial photography ; Agricultural land ; Aluminum industry ; Classification ; Commercial forests ; Company legal issue ; Earth ; Earth resources technology satellites ; Forests ; Image classification ; Investigations ; Land use ; Land use controls ; Land use planning ; Landsat ; Landsat satellites ; National parks ; Neural networks ; PART I: PAPERS ; Population growth ; Remote sensing ; Rivers ; Search engines ; Urban areas ; Watersheds</subject><ispartof>Southeastern geographer, 2013-09, Vol.53 (3), p.250-266</ispartof><rights>2013 Southeastern Division of the Association of American Geographers</rights><rights>Copyright © The Southeastern Division, Association of American Geographers.</rights><rights>COPYRIGHT 2013 University of North Carolina Press</rights><rights>Copyright The University of North Carolina Press Fall 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-191763073d18265566c374b1345013b9a3bb619d83ee524a1d49cfdc7fc7cad03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26233648$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26233648$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27922,27923,58015,58248</link.rule.ids></links><search><creatorcontrib>ZHU, CHUNHAO</creatorcontrib><creatorcontrib>LI, YINGKUI</creatorcontrib><title>High Temporal Resolution Land Use/Land Cover Change from 1984 to 2010 of the Little River Watershed, Tennessee, Investigated Using Landsat and Google Earth Images</title><title>Southeastern geographer</title><addtitle>Southeastern Geographer</addtitle><description>The Little River Watershed (LRW) in Tennessee experienced rapid land use/land cover (LULC) change in recent decades. However, a detailed long-term record of LULC change is still lacking. Here, we examined the pattern of LULC change from 1984 to 2010 in a roughly 2-year interval using the Maximum Likelihood Classification (MLC) of Landsat TM/ETM+ images. The accuracy of the classification was assessed by comparing classified LULC classes with their corresponding classes identified from Google Earth high resolution imagery (representing “ground reference data”). Change detection of classified LULC maps indicated that urban areas (residential and commercial lands) and forest increased in 1984–2010 from 6.3 percent to 11.1 percent and from 65.0 percent to 69.5 percent, respectively. In contrast, agricultural land decreased from 28.3 percent to 18.9 percent. This detailed long-term record of LULC change would provide valuable information for local land-use planning and management in assessing the potential impacts of LULC change in this critical watershed.</description><subject>Accuracy</subject><subject>Aerial photography</subject><subject>Agricultural land</subject><subject>Aluminum industry</subject><subject>Classification</subject><subject>Commercial forests</subject><subject>Company legal issue</subject><subject>Earth</subject><subject>Earth resources technology satellites</subject><subject>Forests</subject><subject>Image classification</subject><subject>Investigations</subject><subject>Land use</subject><subject>Land use controls</subject><subject>Land use planning</subject><subject>Landsat</subject><subject>Landsat satellites</subject><subject>National parks</subject><subject>Neural networks</subject><subject>PART I: PAPERS</subject><subject>Population growth</subject><subject>Remote sensing</subject><subject>Rivers</subject><subject>Search engines</subject><subject>Urban areas</subject><subject>Watersheds</subject><issn>0038-366X</issn><issn>1549-6929</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkl9r2zAUxc3YYFm3xz0OBHsa1Klk_bH1WEKXBgKFtGV7M4p8rSjYUmbJZfs6-6ST27ISCGPoQUL3d8-5HG6WfSR4TiinF8H4eYEJnWNc8FfZjHAmcyEL-TqbYUyrnArx_W32LoR9IiTncpb9vrZmh-6gP_hBdWgDwXdjtN6htXINug9w8fhY-AcY0GKnnAHUDr5HRFYMRY-SI0a-RXEHaG1j7ABt7AR_UxGGsIPmPOk7ByEAnKOVe4AQrUnFSd468-gUVESTz9J7kxSu1BB3aNUrA-F99qZVXYAPz_dZdv_16m5xna9vlqvF5TrXHPOYE0lKQXFJG1IVgnMhNC3ZllDGUyZbqeh2K4hsKgrAC6ZIw6RuG122utSqwfQs-_ykexj8jzENWe_9OLhkWRPGJa8KTqoXyqgOautaHwelext0fUlZJRiv-ETlJygDDlLK3kFr0_cRPz_Bp9NAb_XJhi9HDYmJ8DMaNYZQr243_81Wy_W_Bn9mte86MFCnwBc3xzz7G9oedOzHAC-58QLjsqxvp02cFpFQitPq0dT26altH6If6sNgezX8qguRaoJV9A90mNo3</recordid><startdate>20130922</startdate><enddate>20130922</enddate><creator>ZHU, CHUNHAO</creator><creator>LI, YINGKUI</creator><general>Journal of the Southeastern Division, Association of American Geographers</general><general>The University of North Carolina Press</general><general>University of North Carolina Press</general><scope>8GL</scope><scope>ISR</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20130922</creationdate><title>High Temporal Resolution Land Use/Land Cover Change from 1984 to 2010 of the Little River Watershed, Tennessee, Investigated Using Landsat and Google Earth Images</title><author>ZHU, CHUNHAO ; LI, YINGKUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-191763073d18265566c374b1345013b9a3bb619d83ee524a1d49cfdc7fc7cad03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Aerial photography</topic><topic>Agricultural land</topic><topic>Aluminum industry</topic><topic>Classification</topic><topic>Commercial forests</topic><topic>Company legal issue</topic><topic>Earth</topic><topic>Earth resources technology satellites</topic><topic>Forests</topic><topic>Image classification</topic><topic>Investigations</topic><topic>Land use</topic><topic>Land use controls</topic><topic>Land use planning</topic><topic>Landsat</topic><topic>Landsat satellites</topic><topic>National parks</topic><topic>Neural networks</topic><topic>PART I: PAPERS</topic><topic>Population growth</topic><topic>Remote sensing</topic><topic>Rivers</topic><topic>Search engines</topic><topic>Urban areas</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZHU, CHUNHAO</creatorcontrib><creatorcontrib>LI, YINGKUI</creatorcontrib><collection>Gale In Context: High School</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Southeastern geographer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHU, CHUNHAO</au><au>LI, YINGKUI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Temporal Resolution Land Use/Land Cover Change from 1984 to 2010 of the Little River Watershed, Tennessee, Investigated Using Landsat and Google Earth Images</atitle><jtitle>Southeastern geographer</jtitle><addtitle>Southeastern Geographer</addtitle><date>2013-09-22</date><risdate>2013</risdate><volume>53</volume><issue>3</issue><spage>250</spage><epage>266</epage><pages>250-266</pages><issn>0038-366X</issn><eissn>1549-6929</eissn><abstract>The Little River Watershed (LRW) in Tennessee experienced rapid land use/land cover (LULC) change in recent decades. However, a detailed long-term record of LULC change is still lacking. Here, we examined the pattern of LULC change from 1984 to 2010 in a roughly 2-year interval using the Maximum Likelihood Classification (MLC) of Landsat TM/ETM+ images. The accuracy of the classification was assessed by comparing classified LULC classes with their corresponding classes identified from Google Earth high resolution imagery (representing “ground reference data”). Change detection of classified LULC maps indicated that urban areas (residential and commercial lands) and forest increased in 1984–2010 from 6.3 percent to 11.1 percent and from 65.0 percent to 69.5 percent, respectively. In contrast, agricultural land decreased from 28.3 percent to 18.9 percent. This detailed long-term record of LULC change would provide valuable information for local land-use planning and management in assessing the potential impacts of LULC change in this critical watershed.</abstract><cop>Chapel Hill</cop><pub>Journal of the Southeastern Division, Association of American Geographers</pub><doi>10.1353/sgo.2013.0025</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-366X |
ispartof | Southeastern geographer, 2013-09, Vol.53 (3), p.250-266 |
issn | 0038-366X 1549-6929 |
language | eng |
recordid | cdi_proquest_journals_1459582518 |
source | JSTOR Archive Collection A-Z Listing |
subjects | Accuracy Aerial photography Agricultural land Aluminum industry Classification Commercial forests Company legal issue Earth Earth resources technology satellites Forests Image classification Investigations Land use Land use controls Land use planning Landsat Landsat satellites National parks Neural networks PART I: PAPERS Population growth Remote sensing Rivers Search engines Urban areas Watersheds |
title | High Temporal Resolution Land Use/Land Cover Change from 1984 to 2010 of the Little River Watershed, Tennessee, Investigated Using Landsat and Google Earth Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A20%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Temporal%20Resolution%20Land%20Use/Land%20Cover%20Change%20from%201984%20to%202010%20of%20the%20Little%20River%20Watershed,%20Tennessee,%20Investigated%20Using%20Landsat%20and%20Google%20Earth%20Images&rft.jtitle=Southeastern%20geographer&rft.au=ZHU,%20CHUNHAO&rft.date=2013-09-22&rft.volume=53&rft.issue=3&rft.spage=250&rft.epage=266&rft.pages=250-266&rft.issn=0038-366X&rft.eissn=1549-6929&rft_id=info:doi/10.1353/sgo.2013.0025&rft_dat=%3Cgale_proqu%3EA348645858%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1459582518&rft_id=info:pmid/&rft_galeid=A348645858&rft_jstor_id=26233648&rfr_iscdi=true |