Accounting for variation in exogenous shocks in economic impact modeling
To increase confidence in results from a computable general equilibrium (CGE) model, modelers often conduct sensitivity analysis to better understand the impact of uncertainty or variations in underlying assumptions and parameter values on results. However, CGE modelers have paid little attention to...
Gespeichert in:
Veröffentlicht in: | The Annals of regional science 2013-12, Vol.51 (3), p.711-730 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 730 |
---|---|
container_issue | 3 |
container_start_page | 711 |
container_title | The Annals of regional science |
container_volume | 51 |
creator | Seung, Chang K. Lew, Daniel K. |
description | To increase confidence in results from a computable general equilibrium (CGE) model, modelers often conduct sensitivity analysis to better understand the impact of uncertainty or variations in underlying assumptions and parameter values on results. However, CGE modelers have paid little attention to variations in input (i.e., policy changes or exogenous shocks). Recently, a few input–output studies consider sources of input variations, but focus on addressing a single source of variation and, therefore, ignore the interactions (and cumulative effects) among them. In this study, we propose methods for calculating the range (confidence intervals) of impacts from input variations within a CGE framework, explicitly accounting for multiple sources of input variations. To illustrate our approach, we use, as an example, recreational fisheries in Alaska, and estimate confidence intervals of economic impacts from regulatory changes. In doing so, we consider two important sources of input variation driving the impacts: (i) sample variation in recreational fishing-related expenditures, which is estimated using bootstrapping approach and (ii) stochastic variation from the parameters in the recreation demand model, which is estimated using a simulation-based approach. Results show that confidence bounds on total economic impacts calculated while only accounting for the first type of variation (sample variation) are much narrower than the confidence bounds on the impacts when we account for both sample and stochastic variation in model inputs. |
doi_str_mv | 10.1007/s00168-012-0550-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1458853327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128399161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-a3ab576cb7ed2a82e9f1fa0e46ddf67c691af0a01c985f7e3e172762e274adb3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9giMRvu7MROxqriS6rE0t1yHbu4NHaxEwT_npQwsDCd7vQ-70kPIdcItwgg7zIAipoCMgpVBRROyAxLftwadkpmUEmgWIvynFzkvIOR4Ygz8rQwJg6h92FbuJiKD5287n0MhQ-F_YxbG-KQi_wazVv-uZkYYudN4buDNn3RxdbuR_qSnDm9z_bqd87J-uF-vXyiq5fH5-ViRQ0vZU8115tKCrORtmW6ZrZx6DTYUrStE9KIBrUDDWiaunLScouSScEsk6VuN3xObqbaQ4rvg8292sUhhfGjwrKq64pzJscUTimTYs7JOnVIvtPpSyGooy81-VKjL3X0pWBk2MTkMRu2Nv1p_hf6BjqxbhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1458853327</pqid></control><display><type>article</type><title>Accounting for variation in exogenous shocks in economic impact modeling</title><source>PAIS Index</source><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Seung, Chang K. ; Lew, Daniel K.</creator><creatorcontrib>Seung, Chang K. ; Lew, Daniel K.</creatorcontrib><description>To increase confidence in results from a computable general equilibrium (CGE) model, modelers often conduct sensitivity analysis to better understand the impact of uncertainty or variations in underlying assumptions and parameter values on results. However, CGE modelers have paid little attention to variations in input (i.e., policy changes or exogenous shocks). Recently, a few input–output studies consider sources of input variations, but focus on addressing a single source of variation and, therefore, ignore the interactions (and cumulative effects) among them. In this study, we propose methods for calculating the range (confidence intervals) of impacts from input variations within a CGE framework, explicitly accounting for multiple sources of input variations. To illustrate our approach, we use, as an example, recreational fisheries in Alaska, and estimate confidence intervals of economic impacts from regulatory changes. In doing so, we consider two important sources of input variation driving the impacts: (i) sample variation in recreational fishing-related expenditures, which is estimated using bootstrapping approach and (ii) stochastic variation from the parameters in the recreation demand model, which is estimated using a simulation-based approach. Results show that confidence bounds on total economic impacts calculated while only accounting for the first type of variation (sample variation) are much narrower than the confidence bounds on the impacts when we account for both sample and stochastic variation in model inputs.</description><identifier>ISSN: 0570-1864</identifier><identifier>EISSN: 1432-0592</identifier><identifier>DOI: 10.1007/s00168-012-0550-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Commodities ; Economic impact ; Economic models ; Economics ; Economics and Finance ; Environmental Economics ; Equilibrium ; Estimates ; Expenditures ; Fisheries management ; Geography ; Landscape/Regional and Urban Planning ; Microeconomics ; Natural resource management ; Nonresidents ; Original Paper ; Random variables ; Recreation ; Recreation demand ; Regional/Spatial Science ; Regions ; Sensitivity analysis ; Simulation ; Sport fishing ; Studies</subject><ispartof>The Annals of regional science, 2013-12, Vol.51 (3), p.711-730</ispartof><rights>Springer-Verlag Berlin Heidelberg (outside the USA) 2013</rights><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-a3ab576cb7ed2a82e9f1fa0e46ddf67c691af0a01c985f7e3e172762e274adb3</citedby><cites>FETCH-LOGICAL-c347t-a3ab576cb7ed2a82e9f1fa0e46ddf67c691af0a01c985f7e3e172762e274adb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00168-012-0550-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00168-012-0550-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27865,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Seung, Chang K.</creatorcontrib><creatorcontrib>Lew, Daniel K.</creatorcontrib><title>Accounting for variation in exogenous shocks in economic impact modeling</title><title>The Annals of regional science</title><addtitle>Ann Reg Sci</addtitle><description>To increase confidence in results from a computable general equilibrium (CGE) model, modelers often conduct sensitivity analysis to better understand the impact of uncertainty or variations in underlying assumptions and parameter values on results. However, CGE modelers have paid little attention to variations in input (i.e., policy changes or exogenous shocks). Recently, a few input–output studies consider sources of input variations, but focus on addressing a single source of variation and, therefore, ignore the interactions (and cumulative effects) among them. In this study, we propose methods for calculating the range (confidence intervals) of impacts from input variations within a CGE framework, explicitly accounting for multiple sources of input variations. To illustrate our approach, we use, as an example, recreational fisheries in Alaska, and estimate confidence intervals of economic impacts from regulatory changes. In doing so, we consider two important sources of input variation driving the impacts: (i) sample variation in recreational fishing-related expenditures, which is estimated using bootstrapping approach and (ii) stochastic variation from the parameters in the recreation demand model, which is estimated using a simulation-based approach. Results show that confidence bounds on total economic impacts calculated while only accounting for the first type of variation (sample variation) are much narrower than the confidence bounds on the impacts when we account for both sample and stochastic variation in model inputs.</description><subject>Commodities</subject><subject>Economic impact</subject><subject>Economic models</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Environmental Economics</subject><subject>Equilibrium</subject><subject>Estimates</subject><subject>Expenditures</subject><subject>Fisheries management</subject><subject>Geography</subject><subject>Landscape/Regional and Urban Planning</subject><subject>Microeconomics</subject><subject>Natural resource management</subject><subject>Nonresidents</subject><subject>Original Paper</subject><subject>Random variables</subject><subject>Recreation</subject><subject>Recreation demand</subject><subject>Regional/Spatial Science</subject><subject>Regions</subject><subject>Sensitivity analysis</subject><subject>Simulation</subject><subject>Sport fishing</subject><subject>Studies</subject><issn>0570-1864</issn><issn>1432-0592</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kD1PwzAQhi0EEqXwA9giMRvu7MROxqriS6rE0t1yHbu4NHaxEwT_npQwsDCd7vQ-70kPIdcItwgg7zIAipoCMgpVBRROyAxLftwadkpmUEmgWIvynFzkvIOR4Ygz8rQwJg6h92FbuJiKD5287n0MhQ-F_YxbG-KQi_wazVv-uZkYYudN4buDNn3RxdbuR_qSnDm9z_bqd87J-uF-vXyiq5fH5-ViRQ0vZU8115tKCrORtmW6ZrZx6DTYUrStE9KIBrUDDWiaunLScouSScEsk6VuN3xObqbaQ4rvg8292sUhhfGjwrKq64pzJscUTimTYs7JOnVIvtPpSyGooy81-VKjL3X0pWBk2MTkMRu2Nv1p_hf6BjqxbhQ</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Seung, Chang K.</creator><creator>Lew, Daniel K.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7TQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DHY</scope><scope>DON</scope><scope>DPSOV</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>KC-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M2L</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20131201</creationdate><title>Accounting for variation in exogenous shocks in economic impact modeling</title><author>Seung, Chang K. ; Lew, Daniel K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-a3ab576cb7ed2a82e9f1fa0e46ddf67c691af0a01c985f7e3e172762e274adb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Commodities</topic><topic>Economic impact</topic><topic>Economic models</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Environmental Economics</topic><topic>Equilibrium</topic><topic>Estimates</topic><topic>Expenditures</topic><topic>Fisheries management</topic><topic>Geography</topic><topic>Landscape/Regional and Urban Planning</topic><topic>Microeconomics</topic><topic>Natural resource management</topic><topic>Nonresidents</topic><topic>Original Paper</topic><topic>Random variables</topic><topic>Recreation</topic><topic>Recreation demand</topic><topic>Regional/Spatial Science</topic><topic>Regions</topic><topic>Sensitivity analysis</topic><topic>Simulation</topic><topic>Sport fishing</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seung, Chang K.</creatorcontrib><creatorcontrib>Lew, Daniel K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>PAIS Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>Politics Collection</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Politics Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Political Science Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>The Annals of regional science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seung, Chang K.</au><au>Lew, Daniel K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accounting for variation in exogenous shocks in economic impact modeling</atitle><jtitle>The Annals of regional science</jtitle><stitle>Ann Reg Sci</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>51</volume><issue>3</issue><spage>711</spage><epage>730</epage><pages>711-730</pages><issn>0570-1864</issn><eissn>1432-0592</eissn><abstract>To increase confidence in results from a computable general equilibrium (CGE) model, modelers often conduct sensitivity analysis to better understand the impact of uncertainty or variations in underlying assumptions and parameter values on results. However, CGE modelers have paid little attention to variations in input (i.e., policy changes or exogenous shocks). Recently, a few input–output studies consider sources of input variations, but focus on addressing a single source of variation and, therefore, ignore the interactions (and cumulative effects) among them. In this study, we propose methods for calculating the range (confidence intervals) of impacts from input variations within a CGE framework, explicitly accounting for multiple sources of input variations. To illustrate our approach, we use, as an example, recreational fisheries in Alaska, and estimate confidence intervals of economic impacts from regulatory changes. In doing so, we consider two important sources of input variation driving the impacts: (i) sample variation in recreational fishing-related expenditures, which is estimated using bootstrapping approach and (ii) stochastic variation from the parameters in the recreation demand model, which is estimated using a simulation-based approach. Results show that confidence bounds on total economic impacts calculated while only accounting for the first type of variation (sample variation) are much narrower than the confidence bounds on the impacts when we account for both sample and stochastic variation in model inputs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00168-012-0550-0</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0570-1864 |
ispartof | The Annals of regional science, 2013-12, Vol.51 (3), p.711-730 |
issn | 0570-1864 1432-0592 |
language | eng |
recordid | cdi_proquest_journals_1458853327 |
source | PAIS Index; Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Commodities Economic impact Economic models Economics Economics and Finance Environmental Economics Equilibrium Estimates Expenditures Fisheries management Geography Landscape/Regional and Urban Planning Microeconomics Natural resource management Nonresidents Original Paper Random variables Recreation Recreation demand Regional/Spatial Science Regions Sensitivity analysis Simulation Sport fishing Studies |
title | Accounting for variation in exogenous shocks in economic impact modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A28%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accounting%20for%20variation%20in%20exogenous%20shocks%20in%20economic%20impact%20modeling&rft.jtitle=The%20Annals%20of%20regional%20science&rft.au=Seung,%20Chang%20K.&rft.date=2013-12-01&rft.volume=51&rft.issue=3&rft.spage=711&rft.epage=730&rft.pages=711-730&rft.issn=0570-1864&rft.eissn=1432-0592&rft_id=info:doi/10.1007/s00168-012-0550-0&rft_dat=%3Cproquest_cross%3E3128399161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1458853327&rft_id=info:pmid/&rfr_iscdi=true |