Synthetic light curves and spectra for three-dimensional delayed-detonation models of Type Ia supernovae

In a companion paper, Seitenzahl et al. have presented a set of three-dimensional delayed detonation models for thermonuclear explosions of near-Chandrasekhar-mass white dwarfs (WDs). Here, we present multidimensional radiative transfer simulations that provide synthetic light curves and spectra for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2013-11, Vol.436 (1), p.333-347
Hauptverfasser: Sim, S. A., Seitenzahl, I. R., Kromer, M., Ciaraldi-Schoolmann, F., Röpke, F. K., Fink, M., Hillebrandt, W., Pakmor, R., Ruiter, A. J., Taubenberger, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 347
container_issue 1
container_start_page 333
container_title Monthly notices of the Royal Astronomical Society
container_volume 436
creator Sim, S. A.
Seitenzahl, I. R.
Kromer, M.
Ciaraldi-Schoolmann, F.
Röpke, F. K.
Fink, M.
Hillebrandt, W.
Pakmor, R.
Ruiter, A. J.
Taubenberger, S.
description In a companion paper, Seitenzahl et al. have presented a set of three-dimensional delayed detonation models for thermonuclear explosions of near-Chandrasekhar-mass white dwarfs (WDs). Here, we present multidimensional radiative transfer simulations that provide synthetic light curves and spectra for those models. The model sequence explores both changes in the strength of the deflagration phase (which is controlled by the ignition configuration in our models) and the WD central density. In agreement with previous studies, we find that the strength of the deflagration significantly affects the explosion and the observables. Variations in the central density also have an influence on both brightness and colour, but overall it is a secondary parameter in our set of models. In many respects, the models yield a good match to the observed properties of normal Type Ia supernovae (SNe Ia): peak brightness, rise/decline time-scales and synthetic spectra are all in reasonable agreement. There are, however, several differences. In particular, the models are systematically too red around maximum light, manifest spectral line velocities that are a little too high and yield I-band light curves that do not match observations. Although some of these discrepancies may simply relate to approximations made in the modelling, some pose real challenges to the models. If viewed as a complete sequence, our models do not reproduce the observed light-curve width-luminosity relation (WLR) of SNe Ia: all our models show rather similar B-band decline rates, irrespective of peak brightness. This suggests that simple variations in the strength of the deflagration phase in Chandrasekhar-mass deflagration-to-detonation models do not readily explain the observed diversity of normal SNe Ia. This may imply that some other parameter within the Chandrasekhar-mass paradigm is key to the WLR, or that a substantial fraction of normal SNe Ia arise from an alternative explosion scenario.
doi_str_mv 10.1093/mnras/stt1574
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_journals_1449477680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stt1574</oup_id><sourcerecordid>3122083281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-69f223d0b03d789c482c265e1593aad10e5008e87b0af766a10a0d55a944a8113</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI4u3QfcuIlz0zzaLmXwBQMuHNcl09zaDm1Tk3Sg_97qzN7V4R4-LoePkFsODxxysep6b8IqxMhVKs_IggutWJJrfU4WAEKxLOX8klyFsAcAKRK9IPXH1McaY1PStvmqIy1Hf8BATW9pGLCM3tDKeRprj8hs02EfGtebllpszYSWWYzzHeeSdm4uA3UV3U4D0jdDwzig793B4DW5qEwb8OaUS_L5_LRdv7LN-8vb-nHDSgkiMp1XSSIs7EDYNMtLmSVlohVylQtjLAdUABlm6Q5MlWptOBiwSplcSpNxLpbk7vh38O57xBCLvRv9PDgUXMpcpqnOYKbYkSq9C8FjVQy-6YyfCg7Fr8ziT2Zxkjnz90fejcM_6A8JanhT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449477680</pqid></control><display><type>article</type><title>Synthetic light curves and spectra for three-dimensional delayed-detonation models of Type Ia supernovae</title><source>Oxford Journals Open Access Collection</source><creator>Sim, S. A. ; Seitenzahl, I. R. ; Kromer, M. ; Ciaraldi-Schoolmann, F. ; Röpke, F. K. ; Fink, M. ; Hillebrandt, W. ; Pakmor, R. ; Ruiter, A. J. ; Taubenberger, S.</creator><creatorcontrib>Sim, S. A. ; Seitenzahl, I. R. ; Kromer, M. ; Ciaraldi-Schoolmann, F. ; Röpke, F. K. ; Fink, M. ; Hillebrandt, W. ; Pakmor, R. ; Ruiter, A. J. ; Taubenberger, S.</creatorcontrib><description>In a companion paper, Seitenzahl et al. have presented a set of three-dimensional delayed detonation models for thermonuclear explosions of near-Chandrasekhar-mass white dwarfs (WDs). Here, we present multidimensional radiative transfer simulations that provide synthetic light curves and spectra for those models. The model sequence explores both changes in the strength of the deflagration phase (which is controlled by the ignition configuration in our models) and the WD central density. In agreement with previous studies, we find that the strength of the deflagration significantly affects the explosion and the observables. Variations in the central density also have an influence on both brightness and colour, but overall it is a secondary parameter in our set of models. In many respects, the models yield a good match to the observed properties of normal Type Ia supernovae (SNe Ia): peak brightness, rise/decline time-scales and synthetic spectra are all in reasonable agreement. There are, however, several differences. In particular, the models are systematically too red around maximum light, manifest spectral line velocities that are a little too high and yield I-band light curves that do not match observations. Although some of these discrepancies may simply relate to approximations made in the modelling, some pose real challenges to the models. If viewed as a complete sequence, our models do not reproduce the observed light-curve width-luminosity relation (WLR) of SNe Ia: all our models show rather similar B-band decline rates, irrespective of peak brightness. This suggests that simple variations in the strength of the deflagration phase in Chandrasekhar-mass deflagration-to-detonation models do not readily explain the observed diversity of normal SNe Ia. This may imply that some other parameter within the Chandrasekhar-mass paradigm is key to the WLR, or that a substantial fraction of normal SNe Ia arise from an alternative explosion scenario.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stt1574</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Approximation ; Luminosity ; Simulation ; Supernovae ; White dwarfs</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2013-11, Vol.436 (1), p.333-347</ispartof><rights>2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2013</rights><rights>Copyright Oxford University Press, UK Nov 21, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-69f223d0b03d789c482c265e1593aad10e5008e87b0af766a10a0d55a944a8113</citedby><cites>FETCH-LOGICAL-c403t-69f223d0b03d789c482c265e1593aad10e5008e87b0af766a10a0d55a944a8113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stt1574$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Sim, S. A.</creatorcontrib><creatorcontrib>Seitenzahl, I. R.</creatorcontrib><creatorcontrib>Kromer, M.</creatorcontrib><creatorcontrib>Ciaraldi-Schoolmann, F.</creatorcontrib><creatorcontrib>Röpke, F. K.</creatorcontrib><creatorcontrib>Fink, M.</creatorcontrib><creatorcontrib>Hillebrandt, W.</creatorcontrib><creatorcontrib>Pakmor, R.</creatorcontrib><creatorcontrib>Ruiter, A. J.</creatorcontrib><creatorcontrib>Taubenberger, S.</creatorcontrib><title>Synthetic light curves and spectra for three-dimensional delayed-detonation models of Type Ia supernovae</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Mon. Not. R. Astron. Soc</addtitle><description>In a companion paper, Seitenzahl et al. have presented a set of three-dimensional delayed detonation models for thermonuclear explosions of near-Chandrasekhar-mass white dwarfs (WDs). Here, we present multidimensional radiative transfer simulations that provide synthetic light curves and spectra for those models. The model sequence explores both changes in the strength of the deflagration phase (which is controlled by the ignition configuration in our models) and the WD central density. In agreement with previous studies, we find that the strength of the deflagration significantly affects the explosion and the observables. Variations in the central density also have an influence on both brightness and colour, but overall it is a secondary parameter in our set of models. In many respects, the models yield a good match to the observed properties of normal Type Ia supernovae (SNe Ia): peak brightness, rise/decline time-scales and synthetic spectra are all in reasonable agreement. There are, however, several differences. In particular, the models are systematically too red around maximum light, manifest spectral line velocities that are a little too high and yield I-band light curves that do not match observations. Although some of these discrepancies may simply relate to approximations made in the modelling, some pose real challenges to the models. If viewed as a complete sequence, our models do not reproduce the observed light-curve width-luminosity relation (WLR) of SNe Ia: all our models show rather similar B-band decline rates, irrespective of peak brightness. This suggests that simple variations in the strength of the deflagration phase in Chandrasekhar-mass deflagration-to-detonation models do not readily explain the observed diversity of normal SNe Ia. This may imply that some other parameter within the Chandrasekhar-mass paradigm is key to the WLR, or that a substantial fraction of normal SNe Ia arise from an alternative explosion scenario.</description><subject>Approximation</subject><subject>Luminosity</subject><subject>Simulation</subject><subject>Supernovae</subject><subject>White dwarfs</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI4u3QfcuIlz0zzaLmXwBQMuHNcl09zaDm1Tk3Sg_97qzN7V4R4-LoePkFsODxxysep6b8IqxMhVKs_IggutWJJrfU4WAEKxLOX8klyFsAcAKRK9IPXH1McaY1PStvmqIy1Hf8BATW9pGLCM3tDKeRprj8hs02EfGtebllpszYSWWYzzHeeSdm4uA3UV3U4D0jdDwzig793B4DW5qEwb8OaUS_L5_LRdv7LN-8vb-nHDSgkiMp1XSSIs7EDYNMtLmSVlohVylQtjLAdUABlm6Q5MlWptOBiwSplcSpNxLpbk7vh38O57xBCLvRv9PDgUXMpcpqnOYKbYkSq9C8FjVQy-6YyfCg7Fr8ziT2Zxkjnz90fejcM_6A8JanhT</recordid><startdate>20131121</startdate><enddate>20131121</enddate><creator>Sim, S. A.</creator><creator>Seitenzahl, I. R.</creator><creator>Kromer, M.</creator><creator>Ciaraldi-Schoolmann, F.</creator><creator>Röpke, F. K.</creator><creator>Fink, M.</creator><creator>Hillebrandt, W.</creator><creator>Pakmor, R.</creator><creator>Ruiter, A. J.</creator><creator>Taubenberger, S.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20131121</creationdate><title>Synthetic light curves and spectra for three-dimensional delayed-detonation models of Type Ia supernovae</title><author>Sim, S. A. ; Seitenzahl, I. R. ; Kromer, M. ; Ciaraldi-Schoolmann, F. ; Röpke, F. K. ; Fink, M. ; Hillebrandt, W. ; Pakmor, R. ; Ruiter, A. J. ; Taubenberger, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-69f223d0b03d789c482c265e1593aad10e5008e87b0af766a10a0d55a944a8113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>Luminosity</topic><topic>Simulation</topic><topic>Supernovae</topic><topic>White dwarfs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sim, S. A.</creatorcontrib><creatorcontrib>Seitenzahl, I. R.</creatorcontrib><creatorcontrib>Kromer, M.</creatorcontrib><creatorcontrib>Ciaraldi-Schoolmann, F.</creatorcontrib><creatorcontrib>Röpke, F. K.</creatorcontrib><creatorcontrib>Fink, M.</creatorcontrib><creatorcontrib>Hillebrandt, W.</creatorcontrib><creatorcontrib>Pakmor, R.</creatorcontrib><creatorcontrib>Ruiter, A. J.</creatorcontrib><creatorcontrib>Taubenberger, S.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sim, S. A.</au><au>Seitenzahl, I. R.</au><au>Kromer, M.</au><au>Ciaraldi-Schoolmann, F.</au><au>Röpke, F. K.</au><au>Fink, M.</au><au>Hillebrandt, W.</au><au>Pakmor, R.</au><au>Ruiter, A. J.</au><au>Taubenberger, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic light curves and spectra for three-dimensional delayed-detonation models of Type Ia supernovae</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Mon. Not. R. Astron. Soc</stitle><date>2013-11-21</date><risdate>2013</risdate><volume>436</volume><issue>1</issue><spage>333</spage><epage>347</epage><pages>333-347</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>In a companion paper, Seitenzahl et al. have presented a set of three-dimensional delayed detonation models for thermonuclear explosions of near-Chandrasekhar-mass white dwarfs (WDs). Here, we present multidimensional radiative transfer simulations that provide synthetic light curves and spectra for those models. The model sequence explores both changes in the strength of the deflagration phase (which is controlled by the ignition configuration in our models) and the WD central density. In agreement with previous studies, we find that the strength of the deflagration significantly affects the explosion and the observables. Variations in the central density also have an influence on both brightness and colour, but overall it is a secondary parameter in our set of models. In many respects, the models yield a good match to the observed properties of normal Type Ia supernovae (SNe Ia): peak brightness, rise/decline time-scales and synthetic spectra are all in reasonable agreement. There are, however, several differences. In particular, the models are systematically too red around maximum light, manifest spectral line velocities that are a little too high and yield I-band light curves that do not match observations. Although some of these discrepancies may simply relate to approximations made in the modelling, some pose real challenges to the models. If viewed as a complete sequence, our models do not reproduce the observed light-curve width-luminosity relation (WLR) of SNe Ia: all our models show rather similar B-band decline rates, irrespective of peak brightness. This suggests that simple variations in the strength of the deflagration phase in Chandrasekhar-mass deflagration-to-detonation models do not readily explain the observed diversity of normal SNe Ia. This may imply that some other parameter within the Chandrasekhar-mass paradigm is key to the WLR, or that a substantial fraction of normal SNe Ia arise from an alternative explosion scenario.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stt1574</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2013-11, Vol.436 (1), p.333-347
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_journals_1449477680
source Oxford Journals Open Access Collection
subjects Approximation
Luminosity
Simulation
Supernovae
White dwarfs
title Synthetic light curves and spectra for three-dimensional delayed-detonation models of Type Ia supernovae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A40%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20light%20curves%20and%20spectra%20for%20three-dimensional%20delayed-detonation%20models%20of%20Type%20Ia%20supernovae&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Sim,%20S.%20A.&rft.date=2013-11-21&rft.volume=436&rft.issue=1&rft.spage=333&rft.epage=347&rft.pages=333-347&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stt1574&rft_dat=%3Cproquest_TOX%3E3122083281%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1449477680&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stt1574&rfr_iscdi=true