On the internal vorticity and density structures of miscible thermals

Miscible thermals are formed by instantaneously releasing a finite volume of buoyant fluid into stagnant ambient. Their subsequent motion is then driven by the buoyancy convection. The gross characteristics (e.g. overall size and velocity) of a thermal have been well studied and reported to be self-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2013-05, Vol.722, Article R5
Hauptverfasser: Zhao, B., Law, A. W. K., Lai, A. C. H., Adams, E. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 722
creator Zhao, B.
Law, A. W. K.
Lai, A. C. H.
Adams, E. E.
description Miscible thermals are formed by instantaneously releasing a finite volume of buoyant fluid into stagnant ambient. Their subsequent motion is then driven by the buoyancy convection. The gross characteristics (e.g. overall size and velocity) of a thermal have been well studied and reported to be self-similar. However, there have been few studies concerning the internal structure. Here, turbulent miscible thermals (with initial density excess of 5 % and Reynolds number around 2100) have been investigated experimentally through a large number of realizations. The vorticity and density fields were quantified separately by particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) techniques. Ensemble-averaged data of the transient development of the miscible thermals are presented. Major outcomes include: (i) validating Turner’s assumption of constant circulation within a buoyant vortex ring; (ii) measuring the vorticity and density distributions within the miscible thermal; (iii) quantifying the effect of baroclinicity on the generation and destruction of vorticity within the thermal; and (iv) identifying the significantly slower decay rate of the peak density as compared to the mean.
doi_str_mv 10.1017/jfm.2013.158
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1447512735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2013_158</cupid><sourcerecordid>3114513921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-8c117649dd8c3507c85703c5dc33d6799972094f84a3568c38935f41b4b117a63</originalsourceid><addsrcrecordid>eNptkD1PwzAURS0EEqWw8QMssZLgF9txPKKqfEiVusBsObYDrpqk2A5S_z2OysDAdN9w7tXTQegWSAkExMOu68uKAC2BN2doAayWhagZP0cLQqqqAKjIJbqKcUcyRaRYoPV2wOnTYT8kFwa9x99jSN74dMR6sNi6Ic53TGEyaQou4rHDvY_Gt3s3N0Ov9_EaXXQ53M1vLtH70_pt9VJsts-vq8dNYSgjqWgMQP5HWtsYyokwDReEGm4NpbYWUkpREcm6hmnK68w0kvKOQcvaXNQ1XaK70-4hjF-Ti0ntxml-OypgTHCoBOWZuj9RJowxBtepQ_C9DkcFRM2iVBalZlEqi8p4-Yvrvg3efrg_q_8VfgBB_WlL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1447512735</pqid></control><display><type>article</type><title>On the internal vorticity and density structures of miscible thermals</title><source>Cambridge University Press Journals Complete</source><creator>Zhao, B. ; Law, A. W. K. ; Lai, A. C. H. ; Adams, E. E.</creator><creatorcontrib>Zhao, B. ; Law, A. W. K. ; Lai, A. C. H. ; Adams, E. E.</creatorcontrib><description>Miscible thermals are formed by instantaneously releasing a finite volume of buoyant fluid into stagnant ambient. Their subsequent motion is then driven by the buoyancy convection. The gross characteristics (e.g. overall size and velocity) of a thermal have been well studied and reported to be self-similar. However, there have been few studies concerning the internal structure. Here, turbulent miscible thermals (with initial density excess of 5 % and Reynolds number around 2100) have been investigated experimentally through a large number of realizations. The vorticity and density fields were quantified separately by particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) techniques. Ensemble-averaged data of the transient development of the miscible thermals are presented. Major outcomes include: (i) validating Turner’s assumption of constant circulation within a buoyant vortex ring; (ii) measuring the vorticity and density distributions within the miscible thermal; (iii) quantifying the effect of baroclinicity on the generation and destruction of vorticity within the thermal; and (iv) identifying the significantly slower decay rate of the peak density as compared to the mean.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2013.158</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Fluid mechanics ; Rapids</subject><ispartof>Journal of fluid mechanics, 2013-05, Vol.722, Article R5</ispartof><rights>2013 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-8c117649dd8c3507c85703c5dc33d6799972094f84a3568c38935f41b4b117a63</citedby><cites>FETCH-LOGICAL-c340t-8c117649dd8c3507c85703c5dc33d6799972094f84a3568c38935f41b4b117a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112013001584/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,778,782,27911,27912,55615</link.rule.ids></links><search><creatorcontrib>Zhao, B.</creatorcontrib><creatorcontrib>Law, A. W. K.</creatorcontrib><creatorcontrib>Lai, A. C. H.</creatorcontrib><creatorcontrib>Adams, E. E.</creatorcontrib><title>On the internal vorticity and density structures of miscible thermals</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Miscible thermals are formed by instantaneously releasing a finite volume of buoyant fluid into stagnant ambient. Their subsequent motion is then driven by the buoyancy convection. The gross characteristics (e.g. overall size and velocity) of a thermal have been well studied and reported to be self-similar. However, there have been few studies concerning the internal structure. Here, turbulent miscible thermals (with initial density excess of 5 % and Reynolds number around 2100) have been investigated experimentally through a large number of realizations. The vorticity and density fields were quantified separately by particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) techniques. Ensemble-averaged data of the transient development of the miscible thermals are presented. Major outcomes include: (i) validating Turner’s assumption of constant circulation within a buoyant vortex ring; (ii) measuring the vorticity and density distributions within the miscible thermal; (iii) quantifying the effect of baroclinicity on the generation and destruction of vorticity within the thermal; and (iv) identifying the significantly slower decay rate of the peak density as compared to the mean.</description><subject>Fluid mechanics</subject><subject>Rapids</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkD1PwzAURS0EEqWw8QMssZLgF9txPKKqfEiVusBsObYDrpqk2A5S_z2OysDAdN9w7tXTQegWSAkExMOu68uKAC2BN2doAayWhagZP0cLQqqqAKjIJbqKcUcyRaRYoPV2wOnTYT8kFwa9x99jSN74dMR6sNi6Ic53TGEyaQou4rHDvY_Gt3s3N0Ov9_EaXXQ53M1vLtH70_pt9VJsts-vq8dNYSgjqWgMQP5HWtsYyokwDReEGm4NpbYWUkpREcm6hmnK68w0kvKOQcvaXNQ1XaK70-4hjF-Ti0ntxml-OypgTHCoBOWZuj9RJowxBtepQ_C9DkcFRM2iVBalZlEqi8p4-Yvrvg3efrg_q_8VfgBB_WlL</recordid><startdate>20130510</startdate><enddate>20130510</enddate><creator>Zhao, B.</creator><creator>Law, A. W. K.</creator><creator>Lai, A. C. H.</creator><creator>Adams, E. E.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20130510</creationdate><title>On the internal vorticity and density structures of miscible thermals</title><author>Zhao, B. ; Law, A. W. K. ; Lai, A. C. H. ; Adams, E. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-8c117649dd8c3507c85703c5dc33d6799972094f84a3568c38935f41b4b117a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Fluid mechanics</topic><topic>Rapids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, B.</creatorcontrib><creatorcontrib>Law, A. W. K.</creatorcontrib><creatorcontrib>Lai, A. C. H.</creatorcontrib><creatorcontrib>Adams, E. E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, B.</au><au>Law, A. W. K.</au><au>Lai, A. C. H.</au><au>Adams, E. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the internal vorticity and density structures of miscible thermals</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2013-05-10</date><risdate>2013</risdate><volume>722</volume><artnum>R5</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Miscible thermals are formed by instantaneously releasing a finite volume of buoyant fluid into stagnant ambient. Their subsequent motion is then driven by the buoyancy convection. The gross characteristics (e.g. overall size and velocity) of a thermal have been well studied and reported to be self-similar. However, there have been few studies concerning the internal structure. Here, turbulent miscible thermals (with initial density excess of 5 % and Reynolds number around 2100) have been investigated experimentally through a large number of realizations. The vorticity and density fields were quantified separately by particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) techniques. Ensemble-averaged data of the transient development of the miscible thermals are presented. Major outcomes include: (i) validating Turner’s assumption of constant circulation within a buoyant vortex ring; (ii) measuring the vorticity and density distributions within the miscible thermal; (iii) quantifying the effect of baroclinicity on the generation and destruction of vorticity within the thermal; and (iv) identifying the significantly slower decay rate of the peak density as compared to the mean.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2013.158</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2013-05, Vol.722, Article R5
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_1447512735
source Cambridge University Press Journals Complete
subjects Fluid mechanics
Rapids
title On the internal vorticity and density structures of miscible thermals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A07%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20internal%20vorticity%20and%20density%20structures%20of%20miscible%20thermals&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Zhao,%20B.&rft.date=2013-05-10&rft.volume=722&rft.artnum=R5&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2013.158&rft_dat=%3Cproquest_cross%3E3114513921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1447512735&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2013_158&rfr_iscdi=true