Application of Particle Swarm Optimization Based on Support Vector Machine in Multi-Objective Structure Optimization

Aiming at addressing optimization problems of complex mathematical model with large amount of calculation, a method based on support vector machine and particle swarm optimization for structure optimization design was proposed. Support Vector Machine (SVM) is a powerful computational tool for proble...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2012-10, Vol.201-202, p.283-286
Hauptverfasser: Xia, Qin Xiang, Cai, Bin, Zhai, Jing Mei, Chang, Chen Yang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 286
container_issue
container_start_page 283
container_title Applied Mechanics and Materials
container_volume 201-202
creator Xia, Qin Xiang
Cai, Bin
Zhai, Jing Mei
Chang, Chen Yang
description Aiming at addressing optimization problems of complex mathematical model with large amount of calculation, a method based on support vector machine and particle swarm optimization for structure optimization design was proposed. Support Vector Machine (SVM) is a powerful computational tool for problems with nonlinearity and could establish approximate structures model. Grey relational analysis was utilized to calculate the coefficient between target parameters in order to change the multi-objective optimization problem into a single objective one. The reconstructed models were solved by Particle Swam Optimization (PSO) algorithm. A slip cover at medical treatment was adopted as an example to illustrate this methodology. Appropriate design parameters were selected through the orthogonal experiment combined with ANSYS. The results show this methodology is accurate and feasible, which provides an effective strategy to solve complex optimization problems.
doi_str_mv 10.4028/www.scientific.net/AMM.201-202.283
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1444975972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108733961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-7ddbfc01c0612ff16a8b8da5d0a8cc845fd5b673849ad9f55cf2f720c23881b3</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMf4Jz7DwHvhHZJmrbp5TY_wTJhw9uQpgnL6NqapA799UYnqHdehJPDe3jO4QHgCqOYIsKm-_0-dtKo1httZNwqP52VZUwQjggiMWHJERjhLCNRThk5BpMiZwlKcpaGlpx8ZSgqkiQ7A-fObRHKKKZsBPys7xsjhTddCzsNn4T1RjYKrvbC7uCy92Zn3g_xXDhVw_BZDX3fWQ-flfSdhaWQG9MqaFpYDo030bLahsS8Boq3g_SDVX9IF-BUi8apyXcdg_XtzXpxHz0u7x4Ws8dIhtt9lNd1pSXCEmWYaI0zwSpWi7RGgknJaKrrtMryhNFC1IVOU6mJzgmSJGEMV8kYXB6wve1eBuU833aDbcNGjimlRZ4WOQlT88OUtJ1zVmneW7MT9o1jxD_l8yCf_8jnQT4P8nmQHx7hQX6AXB8g3orWeSU3v3b9H_MB1HKXwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1444975972</pqid></control><display><type>article</type><title>Application of Particle Swarm Optimization Based on Support Vector Machine in Multi-Objective Structure Optimization</title><source>Scientific.net Journals</source><creator>Xia, Qin Xiang ; Cai, Bin ; Zhai, Jing Mei ; Chang, Chen Yang</creator><creatorcontrib>Xia, Qin Xiang ; Cai, Bin ; Zhai, Jing Mei ; Chang, Chen Yang</creatorcontrib><description>Aiming at addressing optimization problems of complex mathematical model with large amount of calculation, a method based on support vector machine and particle swarm optimization for structure optimization design was proposed. Support Vector Machine (SVM) is a powerful computational tool for problems with nonlinearity and could establish approximate structures model. Grey relational analysis was utilized to calculate the coefficient between target parameters in order to change the multi-objective optimization problem into a single objective one. The reconstructed models were solved by Particle Swam Optimization (PSO) algorithm. A slip cover at medical treatment was adopted as an example to illustrate this methodology. Appropriate design parameters were selected through the orthogonal experiment combined with ANSYS. The results show this methodology is accurate and feasible, which provides an effective strategy to solve complex optimization problems.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783037854822</identifier><identifier>ISBN: 3037854820</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.201-202.283</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2012-10, Vol.201-202, p.283-286</ispartof><rights>2012 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Oct 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-7ddbfc01c0612ff16a8b8da5d0a8cc845fd5b673849ad9f55cf2f720c23881b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/1968?width=600</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Xia, Qin Xiang</creatorcontrib><creatorcontrib>Cai, Bin</creatorcontrib><creatorcontrib>Zhai, Jing Mei</creatorcontrib><creatorcontrib>Chang, Chen Yang</creatorcontrib><title>Application of Particle Swarm Optimization Based on Support Vector Machine in Multi-Objective Structure Optimization</title><title>Applied Mechanics and Materials</title><description>Aiming at addressing optimization problems of complex mathematical model with large amount of calculation, a method based on support vector machine and particle swarm optimization for structure optimization design was proposed. Support Vector Machine (SVM) is a powerful computational tool for problems with nonlinearity and could establish approximate structures model. Grey relational analysis was utilized to calculate the coefficient between target parameters in order to change the multi-objective optimization problem into a single objective one. The reconstructed models were solved by Particle Swam Optimization (PSO) algorithm. A slip cover at medical treatment was adopted as an example to illustrate this methodology. Appropriate design parameters were selected through the orthogonal experiment combined with ANSYS. The results show this methodology is accurate and feasible, which provides an effective strategy to solve complex optimization problems.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783037854822</isbn><isbn>3037854820</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkF1LwzAUhoMf4Jz7DwHvhHZJmrbp5TY_wTJhw9uQpgnL6NqapA799UYnqHdehJPDe3jO4QHgCqOYIsKm-_0-dtKo1httZNwqP52VZUwQjggiMWHJERjhLCNRThk5BpMiZwlKcpaGlpx8ZSgqkiQ7A-fObRHKKKZsBPys7xsjhTddCzsNn4T1RjYKrvbC7uCy92Zn3g_xXDhVw_BZDX3fWQ-flfSdhaWQG9MqaFpYDo030bLahsS8Boq3g_SDVX9IF-BUi8apyXcdg_XtzXpxHz0u7x4Ws8dIhtt9lNd1pSXCEmWYaI0zwSpWi7RGgknJaKrrtMryhNFC1IVOU6mJzgmSJGEMV8kYXB6wve1eBuU833aDbcNGjimlRZ4WOQlT88OUtJ1zVmneW7MT9o1jxD_l8yCf_8jnQT4P8nmQHx7hQX6AXB8g3orWeSU3v3b9H_MB1HKXwg</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Xia, Qin Xiang</creator><creator>Cai, Bin</creator><creator>Zhai, Jing Mei</creator><creator>Chang, Chen Yang</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20121001</creationdate><title>Application of Particle Swarm Optimization Based on Support Vector Machine in Multi-Objective Structure Optimization</title><author>Xia, Qin Xiang ; Cai, Bin ; Zhai, Jing Mei ; Chang, Chen Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-7ddbfc01c0612ff16a8b8da5d0a8cc845fd5b673849ad9f55cf2f720c23881b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Qin Xiang</creatorcontrib><creatorcontrib>Cai, Bin</creatorcontrib><creatorcontrib>Zhai, Jing Mei</creatorcontrib><creatorcontrib>Chang, Chen Yang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Qin Xiang</au><au>Cai, Bin</au><au>Zhai, Jing Mei</au><au>Chang, Chen Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Particle Swarm Optimization Based on Support Vector Machine in Multi-Objective Structure Optimization</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2012-10-01</date><risdate>2012</risdate><volume>201-202</volume><spage>283</spage><epage>286</epage><pages>283-286</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783037854822</isbn><isbn>3037854820</isbn><abstract>Aiming at addressing optimization problems of complex mathematical model with large amount of calculation, a method based on support vector machine and particle swarm optimization for structure optimization design was proposed. Support Vector Machine (SVM) is a powerful computational tool for problems with nonlinearity and could establish approximate structures model. Grey relational analysis was utilized to calculate the coefficient between target parameters in order to change the multi-objective optimization problem into a single objective one. The reconstructed models were solved by Particle Swam Optimization (PSO) algorithm. A slip cover at medical treatment was adopted as an example to illustrate this methodology. Appropriate design parameters were selected through the orthogonal experiment combined with ANSYS. The results show this methodology is accurate and feasible, which provides an effective strategy to solve complex optimization problems.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.201-202.283</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2012-10, Vol.201-202, p.283-286
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1444975972
source Scientific.net Journals
title Application of Particle Swarm Optimization Based on Support Vector Machine in Multi-Objective Structure Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T21%3A36%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Particle%20Swarm%20Optimization%20Based%20on%20Support%20Vector%20Machine%20in%20Multi-Objective%20Structure%20Optimization&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Xia,%20Qin%20Xiang&rft.date=2012-10-01&rft.volume=201-202&rft.spage=283&rft.epage=286&rft.pages=283-286&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783037854822&rft.isbn_list=3037854820&rft_id=info:doi/10.4028/www.scientific.net/AMM.201-202.283&rft_dat=%3Cproquest_cross%3E3108733961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1444975972&rft_id=info:pmid/&rfr_iscdi=true