Study on Correlation between Urban Development and Air Pollution Based on Artificial Neural Network

The paper presents a method of researching the impact of urban development on air quality on the basis of artificial neural network (ANN). Statistical data in a monitoring period constitute a sample which contains monitoring values of environmental impact factors and air pollution indicators. Severa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2013-01, Vol.361-363, p.860-863
Hauptverfasser: Li, Jian Ping, Song, Qiao, Yang, Hai Ying, Duan, Han Ming
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 863
container_issue
container_start_page 860
container_title Applied Mechanics and Materials
container_volume 361-363
creator Li, Jian Ping
Song, Qiao
Yang, Hai Ying
Duan, Han Ming
description The paper presents a method of researching the impact of urban development on air quality on the basis of artificial neural network (ANN). Statistical data in a monitoring period constitute a sample which contains monitoring values of environmental impact factors and air pollution indicators. Several samples are employed to train the ANN, and the mapping relationship between environmental impact factors and air pollution indicators is established through the trained ANN. The impact degree of each environmental impact factor on each air pollution indicator can be obtained by using the connection weights of the trained ANN. The case study illustrates the feasibility of the method mentioned in the paper which explores a new idea to the study of environmental impact of urban development.
doi_str_mv 10.4028/www.scientific.net/AMM.361-363.860
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1444960594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108702681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-dcb813f7d1098de0ab893af0970a72ed0fff1e615c2adb23d713f629d83d70213</originalsourceid><addsrcrecordid>eNqNkFtLwzAYhoMHUOf-Q8E7oV3SZDlcznkET6C7DmnzFTtrO5PUsn9vtgl66UX4PsjL8348CJ0TnDGcy8kwDJkva2hDXdVl1kKYzB4eMspJSjnNJMd76JhwnqeCyXwfjZWQFFMhp0IIdbD9w6milB-hE--XGHNGmDxG5Uvo7Trp2mTeOQeNCXXcCwgDQJssXGHa5BK-oOlWH7E9Ma1NZrVLnrum6bfZC-PBbgAztz2uNk3yCL3bjjB07v0UHVam8TD-mSO0uL56nd-m9083d_PZfVpSxkJqy0ISWglLsJIWsCmkoqbCSmAjcrC4qioCnEzL3Ngip1bENM-VlXHFOaEjdLbjrlz32YMPetn1ro2VmjDGFMdTxWLqYpcqXee9g0qvXP1h3FoTrDeydZStf2XrKFtH2TrKjo_qKDtCLneQ4EzrA5Rvf7r-j_kGabuQ6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1444960594</pqid></control><display><type>article</type><title>Study on Correlation between Urban Development and Air Pollution Based on Artificial Neural Network</title><source>Scientific.net Journals</source><creator>Li, Jian Ping ; Song, Qiao ; Yang, Hai Ying ; Duan, Han Ming</creator><creatorcontrib>Li, Jian Ping ; Song, Qiao ; Yang, Hai Ying ; Duan, Han Ming</creatorcontrib><description>The paper presents a method of researching the impact of urban development on air quality on the basis of artificial neural network (ANN). Statistical data in a monitoring period constitute a sample which contains monitoring values of environmental impact factors and air pollution indicators. Several samples are employed to train the ANN, and the mapping relationship between environmental impact factors and air pollution indicators is established through the trained ANN. The impact degree of each environmental impact factor on each air pollution indicator can be obtained by using the connection weights of the trained ANN. The case study illustrates the feasibility of the method mentioned in the paper which explores a new idea to the study of environmental impact of urban development.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783037857779</identifier><identifier>ISBN: 3037857773</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.361-363.860</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2013-01, Vol.361-363, p.860-863</ispartof><rights>2013 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Aug 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c344t-dcb813f7d1098de0ab893af0970a72ed0fff1e615c2adb23d713f629d83d70213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2547?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Jian Ping</creatorcontrib><creatorcontrib>Song, Qiao</creatorcontrib><creatorcontrib>Yang, Hai Ying</creatorcontrib><creatorcontrib>Duan, Han Ming</creatorcontrib><title>Study on Correlation between Urban Development and Air Pollution Based on Artificial Neural Network</title><title>Applied Mechanics and Materials</title><description>The paper presents a method of researching the impact of urban development on air quality on the basis of artificial neural network (ANN). Statistical data in a monitoring period constitute a sample which contains monitoring values of environmental impact factors and air pollution indicators. Several samples are employed to train the ANN, and the mapping relationship between environmental impact factors and air pollution indicators is established through the trained ANN. The impact degree of each environmental impact factor on each air pollution indicator can be obtained by using the connection weights of the trained ANN. The case study illustrates the feasibility of the method mentioned in the paper which explores a new idea to the study of environmental impact of urban development.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783037857779</isbn><isbn>3037857773</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkFtLwzAYhoMHUOf-Q8E7oV3SZDlcznkET6C7DmnzFTtrO5PUsn9vtgl66UX4PsjL8348CJ0TnDGcy8kwDJkva2hDXdVl1kKYzB4eMspJSjnNJMd76JhwnqeCyXwfjZWQFFMhp0IIdbD9w6milB-hE--XGHNGmDxG5Uvo7Trp2mTeOQeNCXXcCwgDQJssXGHa5BK-oOlWH7E9Ma1NZrVLnrum6bfZC-PBbgAztz2uNk3yCL3bjjB07v0UHVam8TD-mSO0uL56nd-m9083d_PZfVpSxkJqy0ISWglLsJIWsCmkoqbCSmAjcrC4qioCnEzL3Ngip1bENM-VlXHFOaEjdLbjrlz32YMPetn1ro2VmjDGFMdTxWLqYpcqXee9g0qvXP1h3FoTrDeydZStf2XrKFtH2TrKjo_qKDtCLneQ4EzrA5Rvf7r-j_kGabuQ6w</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Li, Jian Ping</creator><creator>Song, Qiao</creator><creator>Yang, Hai Ying</creator><creator>Duan, Han Ming</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130101</creationdate><title>Study on Correlation between Urban Development and Air Pollution Based on Artificial Neural Network</title><author>Li, Jian Ping ; Song, Qiao ; Yang, Hai Ying ; Duan, Han Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-dcb813f7d1098de0ab893af0970a72ed0fff1e615c2adb23d713f629d83d70213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jian Ping</creatorcontrib><creatorcontrib>Song, Qiao</creatorcontrib><creatorcontrib>Yang, Hai Ying</creatorcontrib><creatorcontrib>Duan, Han Ming</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jian Ping</au><au>Song, Qiao</au><au>Yang, Hai Ying</au><au>Duan, Han Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on Correlation between Urban Development and Air Pollution Based on Artificial Neural Network</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>361-363</volume><spage>860</spage><epage>863</epage><pages>860-863</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783037857779</isbn><isbn>3037857773</isbn><abstract>The paper presents a method of researching the impact of urban development on air quality on the basis of artificial neural network (ANN). Statistical data in a monitoring period constitute a sample which contains monitoring values of environmental impact factors and air pollution indicators. Several samples are employed to train the ANN, and the mapping relationship between environmental impact factors and air pollution indicators is established through the trained ANN. The impact degree of each environmental impact factor on each air pollution indicator can be obtained by using the connection weights of the trained ANN. The case study illustrates the feasibility of the method mentioned in the paper which explores a new idea to the study of environmental impact of urban development.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.361-363.860</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2013-01, Vol.361-363, p.860-863
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1444960594
source Scientific.net Journals
title Study on Correlation between Urban Development and Air Pollution Based on Artificial Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A18%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20Correlation%20between%20Urban%20Development%20and%20Air%20Pollution%20Based%20on%20Artificial%20Neural%20Network&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Li,%20Jian%20Ping&rft.date=2013-01-01&rft.volume=361-363&rft.spage=860&rft.epage=863&rft.pages=860-863&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783037857779&rft.isbn_list=3037857773&rft_id=info:doi/10.4028/www.scientific.net/AMM.361-363.860&rft_dat=%3Cproquest_cross%3E3108702681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1444960594&rft_id=info:pmid/&rfr_iscdi=true