Deterministic quasi-random nanostructures for photon control
Controlling the flux of photons is crucial in many areas of science and technology. Artificial materials with nano-scale modulation of the refractive index, such as photonic crystals, are able to exercise such control and have opened exciting new possibilities for light manipulation. An interesting...
Gespeichert in:
Veröffentlicht in: | Nature communications 2013, Vol.4 (1), p.2665, Article 2665 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 2665 |
container_title | Nature communications |
container_volume | 4 |
creator | Martins, Emiliano R. Li, Juntao Liu, YiKun Depauw, Valérie Chen, Zhanxu Zhou, Jianying Krauss, Thomas F. |
description | Controlling the flux of photons is crucial in many areas of science and technology. Artificial materials with nano-scale modulation of the refractive index, such as photonic crystals, are able to exercise such control and have opened exciting new possibilities for light manipulation. An interesting alternative to such periodic structures is the class of materials known as quasi-crystals, which offer unique advantages such as richer Fourier spectra. Here we introduce a novel approach for designing such richer Fourier spectra, by using a periodic structure that allows us to control its Fourier components almost at will. Our approach is based on binary gratings, which makes the structures easy to replicate and to tailor towards specific applications. As an example, we show how these structures can be employed to achieve highly efficient broad-band light trapping in thin films that approach the theoretical (Lambertian) limit, a problem of crucial importance for photovoltaics.
The control of propagating light is a crucial aspect in photonics. Here Martins
et al.
demonstrate that by a careful design of their Fourier spectra, quasi-random nanostructures can achieve such control very efficiently. |
doi_str_mv | 10.1038/ncomms3665 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_journals_1444545592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3107287281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-f391f925eff9653833bc2687ebafac81bc7e418bd7e29ac36fa0ef54cfadfb373</originalsourceid><addsrcrecordid>eNplkEtLw0AUhQdRbKnd-AMk4E6JZl7JBNxIfULBja7DZDKjKc1Memey8N93SqoWvJt74X6cwzkInePsBmdU3Frlus7TPOdHaEoyhlNcEHp8cE_Q3PtVFoeWWDB2iiaEYc44F1N096CDhq61rQ-tSjaD9G0K0jauS6y0zgcYVBhA-8Q4SPovF5xNlLMB3PoMnRi59nq-3zP08fT4vnhJl2_Pr4v7ZaqoKEJqoq8pCdfGlDmngtJakVwUupZGKoFrVWiGRd0UmpRS0dzITBvOlJGNqWlBZ-hy1O3BbQbtQ7VyA9hoWWHG2C5KSSJ1NVIKnPegTdVD20n4rnBW7bqq_rqK8MVecqg73fyiP81E4HoEfHzZTw0Hnv_ltoaLdZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1444545592</pqid></control><display><type>article</type><title>Deterministic quasi-random nanostructures for photon control</title><source>Springer Nature OA Free Journals</source><creator>Martins, Emiliano R. ; Li, Juntao ; Liu, YiKun ; Depauw, Valérie ; Chen, Zhanxu ; Zhou, Jianying ; Krauss, Thomas F.</creator><creatorcontrib>Martins, Emiliano R. ; Li, Juntao ; Liu, YiKun ; Depauw, Valérie ; Chen, Zhanxu ; Zhou, Jianying ; Krauss, Thomas F.</creatorcontrib><description>Controlling the flux of photons is crucial in many areas of science and technology. Artificial materials with nano-scale modulation of the refractive index, such as photonic crystals, are able to exercise such control and have opened exciting new possibilities for light manipulation. An interesting alternative to such periodic structures is the class of materials known as quasi-crystals, which offer unique advantages such as richer Fourier spectra. Here we introduce a novel approach for designing such richer Fourier spectra, by using a periodic structure that allows us to control its Fourier components almost at will. Our approach is based on binary gratings, which makes the structures easy to replicate and to tailor towards specific applications. As an example, we show how these structures can be employed to achieve highly efficient broad-band light trapping in thin films that approach the theoretical (Lambertian) limit, a problem of crucial importance for photovoltaics.
The control of propagating light is a crucial aspect in photonics. Here Martins
et al.
demonstrate that by a careful design of their Fourier spectra, quasi-random nanostructures can achieve such control very efficiently.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms3665</identifier><identifier>PMID: 24154558</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/399 ; 639/925/930/1032 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2013, Vol.4 (1), p.2665, Article 2665</ispartof><rights>Springer Nature Limited 2013</rights><rights>Copyright Nature Publishing Group Oct 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-f391f925eff9653833bc2687ebafac81bc7e418bd7e29ac36fa0ef54cfadfb373</citedby><cites>FETCH-LOGICAL-c387t-f391f925eff9653833bc2687ebafac81bc7e418bd7e29ac36fa0ef54cfadfb373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms3665$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms3665$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,41120,42189,51576</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms3665$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24154558$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martins, Emiliano R.</creatorcontrib><creatorcontrib>Li, Juntao</creatorcontrib><creatorcontrib>Liu, YiKun</creatorcontrib><creatorcontrib>Depauw, Valérie</creatorcontrib><creatorcontrib>Chen, Zhanxu</creatorcontrib><creatorcontrib>Zhou, Jianying</creatorcontrib><creatorcontrib>Krauss, Thomas F.</creatorcontrib><title>Deterministic quasi-random nanostructures for photon control</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Controlling the flux of photons is crucial in many areas of science and technology. Artificial materials with nano-scale modulation of the refractive index, such as photonic crystals, are able to exercise such control and have opened exciting new possibilities for light manipulation. An interesting alternative to such periodic structures is the class of materials known as quasi-crystals, which offer unique advantages such as richer Fourier spectra. Here we introduce a novel approach for designing such richer Fourier spectra, by using a periodic structure that allows us to control its Fourier components almost at will. Our approach is based on binary gratings, which makes the structures easy to replicate and to tailor towards specific applications. As an example, we show how these structures can be employed to achieve highly efficient broad-band light trapping in thin films that approach the theoretical (Lambertian) limit, a problem of crucial importance for photovoltaics.
The control of propagating light is a crucial aspect in photonics. Here Martins
et al.
demonstrate that by a careful design of their Fourier spectra, quasi-random nanostructures can achieve such control very efficiently.</description><subject>639/624/399</subject><subject>639/925/930/1032</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkEtLw0AUhQdRbKnd-AMk4E6JZl7JBNxIfULBja7DZDKjKc1Memey8N93SqoWvJt74X6cwzkInePsBmdU3Frlus7TPOdHaEoyhlNcEHp8cE_Q3PtVFoeWWDB2iiaEYc44F1N096CDhq61rQ-tSjaD9G0K0jauS6y0zgcYVBhA-8Q4SPovF5xNlLMB3PoMnRi59nq-3zP08fT4vnhJl2_Pr4v7ZaqoKEJqoq8pCdfGlDmngtJakVwUupZGKoFrVWiGRd0UmpRS0dzITBvOlJGNqWlBZ-hy1O3BbQbtQ7VyA9hoWWHG2C5KSSJ1NVIKnPegTdVD20n4rnBW7bqq_rqK8MVecqg73fyiP81E4HoEfHzZTw0Hnv_ltoaLdZs</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Martins, Emiliano R.</creator><creator>Li, Juntao</creator><creator>Liu, YiKun</creator><creator>Depauw, Valérie</creator><creator>Chen, Zhanxu</creator><creator>Zhou, Jianying</creator><creator>Krauss, Thomas F.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>2013</creationdate><title>Deterministic quasi-random nanostructures for photon control</title><author>Martins, Emiliano R. ; Li, Juntao ; Liu, YiKun ; Depauw, Valérie ; Chen, Zhanxu ; Zhou, Jianying ; Krauss, Thomas F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-f391f925eff9653833bc2687ebafac81bc7e418bd7e29ac36fa0ef54cfadfb373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/624/399</topic><topic>639/925/930/1032</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martins, Emiliano R.</creatorcontrib><creatorcontrib>Li, Juntao</creatorcontrib><creatorcontrib>Liu, YiKun</creatorcontrib><creatorcontrib>Depauw, Valérie</creatorcontrib><creatorcontrib>Chen, Zhanxu</creatorcontrib><creatorcontrib>Zhou, Jianying</creatorcontrib><creatorcontrib>Krauss, Thomas F.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Martins, Emiliano R.</au><au>Li, Juntao</au><au>Liu, YiKun</au><au>Depauw, Valérie</au><au>Chen, Zhanxu</au><au>Zhou, Jianying</au><au>Krauss, Thomas F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deterministic quasi-random nanostructures for photon control</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2013</date><risdate>2013</risdate><volume>4</volume><issue>1</issue><spage>2665</spage><pages>2665-</pages><artnum>2665</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Controlling the flux of photons is crucial in many areas of science and technology. Artificial materials with nano-scale modulation of the refractive index, such as photonic crystals, are able to exercise such control and have opened exciting new possibilities for light manipulation. An interesting alternative to such periodic structures is the class of materials known as quasi-crystals, which offer unique advantages such as richer Fourier spectra. Here we introduce a novel approach for designing such richer Fourier spectra, by using a periodic structure that allows us to control its Fourier components almost at will. Our approach is based on binary gratings, which makes the structures easy to replicate and to tailor towards specific applications. As an example, we show how these structures can be employed to achieve highly efficient broad-band light trapping in thin films that approach the theoretical (Lambertian) limit, a problem of crucial importance for photovoltaics.
The control of propagating light is a crucial aspect in photonics. Here Martins
et al.
demonstrate that by a careful design of their Fourier spectra, quasi-random nanostructures can achieve such control very efficiently.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24154558</pmid><doi>10.1038/ncomms3665</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2013, Vol.4 (1), p.2665, Article 2665 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_proquest_journals_1444545592 |
source | Springer Nature OA Free Journals |
subjects | 639/624/399 639/925/930/1032 Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
title | Deterministic quasi-random nanostructures for photon control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A17%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deterministic%20quasi-random%20nanostructures%20for%20photon%20control&rft.jtitle=Nature%20communications&rft.au=Martins,%20Emiliano%20R.&rft.date=2013&rft.volume=4&rft.issue=1&rft.spage=2665&rft.pages=2665-&rft.artnum=2665&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms3665&rft_dat=%3Cproquest_C6C%3E3107287281%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1444545592&rft_id=info:pmid/24154558&rfr_iscdi=true |