Towards the Derivation of Stress Intensity Factors by Parametric Modelling of Full-Field Thermoelastic Data

Thermoelastic Stress Analysis (TSA) is a well-established full-field technique for experimental stress analysis that has proved to be extremely effective for studying stress fields in the vicinity of cracks. Recently, work has focused on the observation that the stress-sum contours (isopachics) obta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2010-06, Vol.24-25, p.227-232
Hauptverfasser: Hebb, R.I., Tatum, P., Dulieu-Barton, Janice M., Worden, Keith
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 232
container_issue
container_start_page 227
container_title Applied Mechanics and Materials
container_volume 24-25
creator Hebb, R.I.
Tatum, P.
Dulieu-Barton, Janice M.
Worden, Keith
description Thermoelastic Stress Analysis (TSA) is a well-established full-field technique for experimental stress analysis that has proved to be extremely effective for studying stress fields in the vicinity of cracks. Recently, work has focused on the observation that the stress-sum contours (isopachics) obtained from TSA take the form of a cardioid. Genetic Algorithms (GAs) and Differential Evolution (DE) have proved successful for accurate parameter estimation of the cardioids, thus allowing the SIFs to be calculated. Originally, some curve-fits indicated that a pure cardioid form is inappropriate for the base model, especially for mixed-mode cracks. The deviation from the cardioid form has been shown to be due to higher-order terms within the stress function. The objective of the current paper is to use a modified version of the original methodology (that fitted parameters to a single isopachic) to find the higher-order parameters from the entire data field obtained from the TSA.
doi_str_mv 10.4028/www.scientific.net/AMM.24-25.227
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1444166145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3106716711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-da9e3daefe0767f51946b7e7c5267bd463d40e500cc52e4f37f7a402f8221b993</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0eElD4B0ts2CR1HCdOdjwDlahAoqwt1xlTQxqD7RL173EpEixZjTRz51zpIHSWkZQRWo2HYUi9MtAHo41Kewjji-k0pSyhRUop30GHWVnShLOK7qIjUvGK1ZRV1d73gSR1npcH6Mj7V0JKlrHqEL3N7CBd63FYAL4GZz5lMLbHVuOn4MB7POkD9N6ENW6kCtZ5PF_jR-nkEoIzCk9tC11n-pfNT7PquqQx0LV4tgC3tNBJH2LqWgZ5jPa17Dyc_MwRem5uZld3yf3D7eTq4j5RecFD0soa8laCBsJLrousZuWcA1cFLfm8ZWXeMgIFISpugOmcay6jIF1Rms3rOh-h0y333dmPFfggXu3K9bFSZIyxqCJjRUydb1PKWe8daPHuzFK6tciI2PgW0bf49S2ibxF9C8oELUT0HRGXW0RwsvcB1OJP038hXxsbkao</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1444166145</pqid></control><display><type>article</type><title>Towards the Derivation of Stress Intensity Factors by Parametric Modelling of Full-Field Thermoelastic Data</title><source>Scientific.net Journals</source><creator>Hebb, R.I. ; Tatum, P. ; Dulieu-Barton, Janice M. ; Worden, Keith</creator><creatorcontrib>Hebb, R.I. ; Tatum, P. ; Dulieu-Barton, Janice M. ; Worden, Keith</creatorcontrib><description>Thermoelastic Stress Analysis (TSA) is a well-established full-field technique for experimental stress analysis that has proved to be extremely effective for studying stress fields in the vicinity of cracks. Recently, work has focused on the observation that the stress-sum contours (isopachics) obtained from TSA take the form of a cardioid. Genetic Algorithms (GAs) and Differential Evolution (DE) have proved successful for accurate parameter estimation of the cardioids, thus allowing the SIFs to be calculated. Originally, some curve-fits indicated that a pure cardioid form is inappropriate for the base model, especially for mixed-mode cracks. The deviation from the cardioid form has been shown to be due to higher-order terms within the stress function. The objective of the current paper is to use a modified version of the original methodology (that fitted parameters to a single isopachic) to find the higher-order parameters from the entire data field obtained from the TSA.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 0878492488</identifier><identifier>ISBN: 9780878492480</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.24-25.227</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2010-06, Vol.24-25, p.227-232</ispartof><rights>2010 Hebb et al.</rights><rights>Copyright Trans Tech Publications Ltd. Jun 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c357t-da9e3daefe0767f51946b7e7c5267bd463d40e500cc52e4f37f7a402f8221b993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/972?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hebb, R.I.</creatorcontrib><creatorcontrib>Tatum, P.</creatorcontrib><creatorcontrib>Dulieu-Barton, Janice M.</creatorcontrib><creatorcontrib>Worden, Keith</creatorcontrib><title>Towards the Derivation of Stress Intensity Factors by Parametric Modelling of Full-Field Thermoelastic Data</title><title>Applied Mechanics and Materials</title><description>Thermoelastic Stress Analysis (TSA) is a well-established full-field technique for experimental stress analysis that has proved to be extremely effective for studying stress fields in the vicinity of cracks. Recently, work has focused on the observation that the stress-sum contours (isopachics) obtained from TSA take the form of a cardioid. Genetic Algorithms (GAs) and Differential Evolution (DE) have proved successful for accurate parameter estimation of the cardioids, thus allowing the SIFs to be calculated. Originally, some curve-fits indicated that a pure cardioid form is inappropriate for the base model, especially for mixed-mode cracks. The deviation from the cardioid form has been shown to be due to higher-order terms within the stress function. The objective of the current paper is to use a modified version of the original methodology (that fitted parameters to a single isopachic) to find the higher-order parameters from the entire data field obtained from the TSA.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>0878492488</isbn><isbn>9780878492480</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkMtOwzAQRS0eElD4B0ts2CR1HCdOdjwDlahAoqwt1xlTQxqD7RL173EpEixZjTRz51zpIHSWkZQRWo2HYUi9MtAHo41Kewjji-k0pSyhRUop30GHWVnShLOK7qIjUvGK1ZRV1d73gSR1npcH6Mj7V0JKlrHqEL3N7CBd63FYAL4GZz5lMLbHVuOn4MB7POkD9N6ENW6kCtZ5PF_jR-nkEoIzCk9tC11n-pfNT7PquqQx0LV4tgC3tNBJH2LqWgZ5jPa17Dyc_MwRem5uZld3yf3D7eTq4j5RecFD0soa8laCBsJLrousZuWcA1cFLfm8ZWXeMgIFISpugOmcay6jIF1Rms3rOh-h0y333dmPFfggXu3K9bFSZIyxqCJjRUydb1PKWe8daPHuzFK6tciI2PgW0bf49S2ibxF9C8oELUT0HRGXW0RwsvcB1OJP038hXxsbkao</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Hebb, R.I.</creator><creator>Tatum, P.</creator><creator>Dulieu-Barton, Janice M.</creator><creator>Worden, Keith</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20100601</creationdate><title>Towards the Derivation of Stress Intensity Factors by Parametric Modelling of Full-Field Thermoelastic Data</title><author>Hebb, R.I. ; Tatum, P. ; Dulieu-Barton, Janice M. ; Worden, Keith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-da9e3daefe0767f51946b7e7c5267bd463d40e500cc52e4f37f7a402f8221b993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hebb, R.I.</creatorcontrib><creatorcontrib>Tatum, P.</creatorcontrib><creatorcontrib>Dulieu-Barton, Janice M.</creatorcontrib><creatorcontrib>Worden, Keith</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hebb, R.I.</au><au>Tatum, P.</au><au>Dulieu-Barton, Janice M.</au><au>Worden, Keith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards the Derivation of Stress Intensity Factors by Parametric Modelling of Full-Field Thermoelastic Data</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2010-06-01</date><risdate>2010</risdate><volume>24-25</volume><spage>227</spage><epage>232</epage><pages>227-232</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>0878492488</isbn><isbn>9780878492480</isbn><abstract>Thermoelastic Stress Analysis (TSA) is a well-established full-field technique for experimental stress analysis that has proved to be extremely effective for studying stress fields in the vicinity of cracks. Recently, work has focused on the observation that the stress-sum contours (isopachics) obtained from TSA take the form of a cardioid. Genetic Algorithms (GAs) and Differential Evolution (DE) have proved successful for accurate parameter estimation of the cardioids, thus allowing the SIFs to be calculated. Originally, some curve-fits indicated that a pure cardioid form is inappropriate for the base model, especially for mixed-mode cracks. The deviation from the cardioid form has been shown to be due to higher-order terms within the stress function. The objective of the current paper is to use a modified version of the original methodology (that fitted parameters to a single isopachic) to find the higher-order parameters from the entire data field obtained from the TSA.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.24-25.227</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2010-06, Vol.24-25, p.227-232
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1444166145
source Scientific.net Journals
title Towards the Derivation of Stress Intensity Factors by Parametric Modelling of Full-Field Thermoelastic Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A06%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20the%20Derivation%20of%20Stress%20Intensity%20Factors%20by%20Parametric%20Modelling%20of%20Full-Field%20Thermoelastic%20Data&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Hebb,%20R.I.&rft.date=2010-06-01&rft.volume=24-25&rft.spage=227&rft.epage=232&rft.pages=227-232&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=0878492488&rft.isbn_list=9780878492480&rft_id=info:doi/10.4028/www.scientific.net/AMM.24-25.227&rft_dat=%3Cproquest_cross%3E3106716711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1444166145&rft_id=info:pmid/&rfr_iscdi=true