Dendritic Growth Morphologies in Al-Zn Alloys—Part I: X-ray Tomographic Microscopy
Upon solidification, most metallic alloys form dendritic structures that grow along directions corresponding to low index crystal axes, e.g ., 〈 100 〉 directions in fcc aluminum. However, recent findings[ 1 , 2 ] have shown that an increase in the zinc content in Al-Zn alloys continuously changes th...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2013-12, Vol.44 (12), p.5522-5531 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5531 |
---|---|
container_issue | 12 |
container_start_page | 5522 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 44 |
creator | Friedli, JONATHAN Fife, J. L. Di Napoli, P. Rappaz, M. |
description | Upon solidification, most metallic alloys form dendritic structures that grow along directions corresponding to low index crystal axes,
e.g
.,
〈
100
〉
directions in fcc aluminum. However, recent findings[
1
,
2
] have shown that an increase in the zinc content in Al-Zn alloys continuously changes the dendrite growth direction from
〈
100
〉
to
〈
110
〉
in {100} planes. At intermediate compositions, between 25 wt pct and 55 wt pct Zn,
〈
320
〉
dendrites and textured seaweeds were reported. The reason for this dendrite orientation transition is that this system exhibits a large solubility of zinc, a hexagonal metal, in the primary fcc aluminum phase, thus modifying its weak solid–liquid interfacial energy anisotropy. Owing to the complexity of the phenomenology, there is still no satisfactory theory that predicts all the observed microstructures. The current study is thus aimed at better understanding the formation of these structures. This is provided by the access to their 3D morphologies
via
synchrotron-based X-ray tomographic microscopy of quenched Bridgman solidified specimens in combination with the determination of the crystal orientation of the dendrites by electron-backscattered diffraction. Most interestingly, all alloys with intermediate compositions were shown to grow as seaweeds, constrained to grow mostly in a (001) symmetry plane, by an alternating growth direction mechanism. Thus, these structures are far from random and are considered less hierarchically ordered than common dendrites. |
doi_str_mv | 10.1007/s11661-013-1912-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1443980816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3105945781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-381b1a63aa1567741b65c0d7c57f3fc17c5b54308dc66c7f8bf83a89418128413</originalsourceid><addsrcrecordid>eNp1UEFOwzAQtBBIlMIDuEXibPDGju1wqwqUSq3gUCTExXLcpE2VxsFOhXLjEbyQl-AoHLhw2Z2VZmZ3B6FLINdAiLjxAJwDJkAxpBBjcYRGkLB-YuQ4YCIoTnhMT9GZ9ztCCKSUj9DqLq_XrmxLE82c_Wi30dK6ZmsruylzH5V1NKnwW18r2_nvz69n7dpofhu9Yqe7aGX3duN0sw36ZWmc9cY23Tk6KXTl84vfPkYvD_er6SNePM3m08kCGxYnLaYSMtCcag0JF4JBxhND1sIkoqCFgQCy8AKRa8O5EYXMCkm1TBlIiCUDOkZXg2_j7Psh963a2YOrw0oFjNFUEgk8sGBg9ed5lxeqceVeu04BUX14aghPhfBUH54SQRMPGh-49SZ3f5z_Ff0AlPZxJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443980816</pqid></control><display><type>article</type><title>Dendritic Growth Morphologies in Al-Zn Alloys—Part I: X-ray Tomographic Microscopy</title><source>SpringerLink Journals - AutoHoldings</source><creator>Friedli, JONATHAN ; Fife, J. L. ; Di Napoli, P. ; Rappaz, M.</creator><creatorcontrib>Friedli, JONATHAN ; Fife, J. L. ; Di Napoli, P. ; Rappaz, M.</creatorcontrib><description>Upon solidification, most metallic alloys form dendritic structures that grow along directions corresponding to low index crystal axes,
e.g
.,
〈
100
〉
directions in fcc aluminum. However, recent findings[
1
,
2
] have shown that an increase in the zinc content in Al-Zn alloys continuously changes the dendrite growth direction from
〈
100
〉
to
〈
110
〉
in {100} planes. At intermediate compositions, between 25 wt pct and 55 wt pct Zn,
〈
320
〉
dendrites and textured seaweeds were reported. The reason for this dendrite orientation transition is that this system exhibits a large solubility of zinc, a hexagonal metal, in the primary fcc aluminum phase, thus modifying its weak solid–liquid interfacial energy anisotropy. Owing to the complexity of the phenomenology, there is still no satisfactory theory that predicts all the observed microstructures. The current study is thus aimed at better understanding the formation of these structures. This is provided by the access to their 3D morphologies
via
synchrotron-based X-ray tomographic microscopy of quenched Bridgman solidified specimens in combination with the determination of the crystal orientation of the dendrites by electron-backscattered diffraction. Most interestingly, all alloys with intermediate compositions were shown to grow as seaweeds, constrained to grow mostly in a (001) symmetry plane, by an alternating growth direction mechanism. Thus, these structures are far from random and are considered less hierarchically ordered than common dendrites.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-013-1912-7</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Aluminum alloys ; Anisotropy ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Materials Science ; Metallic Materials ; Microscopy ; Microstructure ; Morphology ; Nanotechnology ; Structural Materials ; Surfaces and Interfaces ; Thin Films ; Tomography</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2013-12, Vol.44 (12), p.5522-5531</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-381b1a63aa1567741b65c0d7c57f3fc17c5b54308dc66c7f8bf83a89418128413</citedby><cites>FETCH-LOGICAL-c425t-381b1a63aa1567741b65c0d7c57f3fc17c5b54308dc66c7f8bf83a89418128413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-013-1912-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-013-1912-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Friedli, JONATHAN</creatorcontrib><creatorcontrib>Fife, J. L.</creatorcontrib><creatorcontrib>Di Napoli, P.</creatorcontrib><creatorcontrib>Rappaz, M.</creatorcontrib><title>Dendritic Growth Morphologies in Al-Zn Alloys—Part I: X-ray Tomographic Microscopy</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>Upon solidification, most metallic alloys form dendritic structures that grow along directions corresponding to low index crystal axes,
e.g
.,
〈
100
〉
directions in fcc aluminum. However, recent findings[
1
,
2
] have shown that an increase in the zinc content in Al-Zn alloys continuously changes the dendrite growth direction from
〈
100
〉
to
〈
110
〉
in {100} planes. At intermediate compositions, between 25 wt pct and 55 wt pct Zn,
〈
320
〉
dendrites and textured seaweeds were reported. The reason for this dendrite orientation transition is that this system exhibits a large solubility of zinc, a hexagonal metal, in the primary fcc aluminum phase, thus modifying its weak solid–liquid interfacial energy anisotropy. Owing to the complexity of the phenomenology, there is still no satisfactory theory that predicts all the observed microstructures. The current study is thus aimed at better understanding the formation of these structures. This is provided by the access to their 3D morphologies
via
synchrotron-based X-ray tomographic microscopy of quenched Bridgman solidified specimens in combination with the determination of the crystal orientation of the dendrites by electron-backscattered diffraction. Most interestingly, all alloys with intermediate compositions were shown to grow as seaweeds, constrained to grow mostly in a (001) symmetry plane, by an alternating growth direction mechanism. Thus, these structures are far from random and are considered less hierarchically ordered than common dendrites.</description><subject>Aluminum alloys</subject><subject>Anisotropy</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microscopy</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tomography</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UEFOwzAQtBBIlMIDuEXibPDGju1wqwqUSq3gUCTExXLcpE2VxsFOhXLjEbyQl-AoHLhw2Z2VZmZ3B6FLINdAiLjxAJwDJkAxpBBjcYRGkLB-YuQ4YCIoTnhMT9GZ9ztCCKSUj9DqLq_XrmxLE82c_Wi30dK6ZmsruylzH5V1NKnwW18r2_nvz69n7dpofhu9Yqe7aGX3duN0sw36ZWmc9cY23Tk6KXTl84vfPkYvD_er6SNePM3m08kCGxYnLaYSMtCcag0JF4JBxhND1sIkoqCFgQCy8AKRa8O5EYXMCkm1TBlIiCUDOkZXg2_j7Psh963a2YOrw0oFjNFUEgk8sGBg9ed5lxeqceVeu04BUX14aghPhfBUH54SQRMPGh-49SZ3f5z_Ff0AlPZxJQ</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Friedli, JONATHAN</creator><creator>Fife, J. L.</creator><creator>Di Napoli, P.</creator><creator>Rappaz, M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20131201</creationdate><title>Dendritic Growth Morphologies in Al-Zn Alloys—Part I: X-ray Tomographic Microscopy</title><author>Friedli, JONATHAN ; Fife, J. L. ; Di Napoli, P. ; Rappaz, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-381b1a63aa1567741b65c0d7c57f3fc17c5b54308dc66c7f8bf83a89418128413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aluminum alloys</topic><topic>Anisotropy</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microscopy</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Friedli, JONATHAN</creatorcontrib><creatorcontrib>Fife, J. L.</creatorcontrib><creatorcontrib>Di Napoli, P.</creatorcontrib><creatorcontrib>Rappaz, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Friedli, JONATHAN</au><au>Fife, J. L.</au><au>Di Napoli, P.</au><au>Rappaz, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dendritic Growth Morphologies in Al-Zn Alloys—Part I: X-ray Tomographic Microscopy</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>44</volume><issue>12</issue><spage>5522</spage><epage>5531</epage><pages>5522-5531</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>Upon solidification, most metallic alloys form dendritic structures that grow along directions corresponding to low index crystal axes,
e.g
.,
〈
100
〉
directions in fcc aluminum. However, recent findings[
1
,
2
] have shown that an increase in the zinc content in Al-Zn alloys continuously changes the dendrite growth direction from
〈
100
〉
to
〈
110
〉
in {100} planes. At intermediate compositions, between 25 wt pct and 55 wt pct Zn,
〈
320
〉
dendrites and textured seaweeds were reported. The reason for this dendrite orientation transition is that this system exhibits a large solubility of zinc, a hexagonal metal, in the primary fcc aluminum phase, thus modifying its weak solid–liquid interfacial energy anisotropy. Owing to the complexity of the phenomenology, there is still no satisfactory theory that predicts all the observed microstructures. The current study is thus aimed at better understanding the formation of these structures. This is provided by the access to their 3D morphologies
via
synchrotron-based X-ray tomographic microscopy of quenched Bridgman solidified specimens in combination with the determination of the crystal orientation of the dendrites by electron-backscattered diffraction. Most interestingly, all alloys with intermediate compositions were shown to grow as seaweeds, constrained to grow mostly in a (001) symmetry plane, by an alternating growth direction mechanism. Thus, these structures are far from random and are considered less hierarchically ordered than common dendrites.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11661-013-1912-7</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2013-12, Vol.44 (12), p.5522-5531 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_journals_1443980816 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aluminum alloys Anisotropy Characterization and Evaluation of Materials Chemistry and Materials Science Materials Science Metallic Materials Microscopy Microstructure Morphology Nanotechnology Structural Materials Surfaces and Interfaces Thin Films Tomography |
title | Dendritic Growth Morphologies in Al-Zn Alloys—Part I: X-ray Tomographic Microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A04%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dendritic%20Growth%20Morphologies%20in%20Al-Zn%20Alloys%E2%80%94Part%20I:%20X-ray%20Tomographic%20Microscopy&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Friedli,%20JONATHAN&rft.date=2013-12-01&rft.volume=44&rft.issue=12&rft.spage=5522&rft.epage=5531&rft.pages=5522-5531&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-013-1912-7&rft_dat=%3Cproquest_cross%3E3105945781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443980816&rft_id=info:pmid/&rfr_iscdi=true |