Garbage Crusher Fault Diagnosis Based on RBF Neural Network

The garbage crusher is a new kind of crusher for garbage crushing when processing Municipal Solid Waste (MSW). With the development of automatic equipment and the complication of structure and properties of the garbage crusher, the fault diagnosis of garbage crusher is very important. In this paper,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2009-10, Vol.16-19, p.971-975
Hauptverfasser: Li, Cong, Jing, Hui, Sun, Yong Hou, Huang, Mei Fa
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 975
container_issue
container_start_page 971
container_title Applied Mechanics and Materials
container_volume 16-19
creator Li, Cong
Jing, Hui
Sun, Yong Hou
Huang, Mei Fa
description The garbage crusher is a new kind of crusher for garbage crushing when processing Municipal Solid Waste (MSW). With the development of automatic equipment and the complication of structure and properties of the garbage crusher, the fault diagnosis of garbage crusher is very important. In this paper, according to the fault symptoms and parameters, Radial Basis Function Neural Network (RBF NN) is used for fault diagnosis of the garbage crusher. The structure and inference of RBF NN are discussed in detail. The garbage crusher fault diagnosis model is established based on RBF network. At last, the fault of mechanical system is taken as an example of garbage crusher fault diagnosis. Training simulation results of the neural network are given base on MATLAB software. The result shows the RBF NN is suitable for fault diagnosis of garbage crusher.
doi_str_mv 10.4028/www.scientific.net/AMM.16-19.971
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1443815868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3105552721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-484520a2e0b23f2dcfb7dab2ad7a3f130b1fac7008b84abb524762834f9664e03</originalsourceid><addsrcrecordid>eNqNkMtKAzEARYMPUGv_YcCNm5nm1TxwY1ttFVoF0XVIpkk7tc7UJMPg3xutoEtXd3Ev58IB4BLBgkIsBl3XFaGsbB0rV5VFbeNgtFgUiOVIFpKjA3CKGMM5pwIfgr7kAgouqMRS4qPvDuaSEHYCzkLYQMgoouIUXM20N3pls4lvw9r6bKrbbcxuKr2qm1CFbKyDXWZNnT2Np9mDbb3epohd41_PwbHT22D7P9kDL9Pb58ldPn-c3U9G87wkDMecCjrEUGMLDSYOL0tn-FIbrJdcE4cINMjpkkMojKDamCGmnGFBqJOMUQtJD1zsuTvfvLc2RLVpWl-nS4UoJQINBRNpdb1flb4JwVundr560_5DIai-FKqkUP0qVEmhSgoVYgpJlRQmxHiPiF7XIdpy_efpv5BPEu5_xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443815868</pqid></control><display><type>article</type><title>Garbage Crusher Fault Diagnosis Based on RBF Neural Network</title><source>Scientific.net Journals</source><creator>Li, Cong ; Jing, Hui ; Sun, Yong Hou ; Huang, Mei Fa</creator><creatorcontrib>Li, Cong ; Jing, Hui ; Sun, Yong Hou ; Huang, Mei Fa</creatorcontrib><description>The garbage crusher is a new kind of crusher for garbage crushing when processing Municipal Solid Waste (MSW). With the development of automatic equipment and the complication of structure and properties of the garbage crusher, the fault diagnosis of garbage crusher is very important. In this paper, according to the fault symptoms and parameters, Radial Basis Function Neural Network (RBF NN) is used for fault diagnosis of the garbage crusher. The structure and inference of RBF NN are discussed in detail. The garbage crusher fault diagnosis model is established based on RBF network. At last, the fault of mechanical system is taken as an example of garbage crusher fault diagnosis. Training simulation results of the neural network are given base on MATLAB software. The result shows the RBF NN is suitable for fault diagnosis of garbage crusher.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9780878492992</identifier><identifier>ISBN: 0878492992</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.16-19.971</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2009-10, Vol.16-19, p.971-975</ispartof><rights>2009 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Oct 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-484520a2e0b23f2dcfb7dab2ad7a3f130b1fac7008b84abb524762834f9664e03</citedby><cites>FETCH-LOGICAL-c362t-484520a2e0b23f2dcfb7dab2ad7a3f130b1fac7008b84abb524762834f9664e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/875?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Cong</creatorcontrib><creatorcontrib>Jing, Hui</creatorcontrib><creatorcontrib>Sun, Yong Hou</creatorcontrib><creatorcontrib>Huang, Mei Fa</creatorcontrib><title>Garbage Crusher Fault Diagnosis Based on RBF Neural Network</title><title>Applied Mechanics and Materials</title><description>The garbage crusher is a new kind of crusher for garbage crushing when processing Municipal Solid Waste (MSW). With the development of automatic equipment and the complication of structure and properties of the garbage crusher, the fault diagnosis of garbage crusher is very important. In this paper, according to the fault symptoms and parameters, Radial Basis Function Neural Network (RBF NN) is used for fault diagnosis of the garbage crusher. The structure and inference of RBF NN are discussed in detail. The garbage crusher fault diagnosis model is established based on RBF network. At last, the fault of mechanical system is taken as an example of garbage crusher fault diagnosis. Training simulation results of the neural network are given base on MATLAB software. The result shows the RBF NN is suitable for fault diagnosis of garbage crusher.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9780878492992</isbn><isbn>0878492992</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkMtKAzEARYMPUGv_YcCNm5nm1TxwY1ttFVoF0XVIpkk7tc7UJMPg3xutoEtXd3Ev58IB4BLBgkIsBl3XFaGsbB0rV5VFbeNgtFgUiOVIFpKjA3CKGMM5pwIfgr7kAgouqMRS4qPvDuaSEHYCzkLYQMgoouIUXM20N3pls4lvw9r6bKrbbcxuKr2qm1CFbKyDXWZNnT2Np9mDbb3epohd41_PwbHT22D7P9kDL9Pb58ldPn-c3U9G87wkDMecCjrEUGMLDSYOL0tn-FIbrJdcE4cINMjpkkMojKDamCGmnGFBqJOMUQtJD1zsuTvfvLc2RLVpWl-nS4UoJQINBRNpdb1flb4JwVundr560_5DIai-FKqkUP0qVEmhSgoVYgpJlRQmxHiPiF7XIdpy_efpv5BPEu5_xg</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Li, Cong</creator><creator>Jing, Hui</creator><creator>Sun, Yong Hou</creator><creator>Huang, Mei Fa</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20091001</creationdate><title>Garbage Crusher Fault Diagnosis Based on RBF Neural Network</title><author>Li, Cong ; Jing, Hui ; Sun, Yong Hou ; Huang, Mei Fa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-484520a2e0b23f2dcfb7dab2ad7a3f130b1fac7008b84abb524762834f9664e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Cong</creatorcontrib><creatorcontrib>Jing, Hui</creatorcontrib><creatorcontrib>Sun, Yong Hou</creatorcontrib><creatorcontrib>Huang, Mei Fa</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Cong</au><au>Jing, Hui</au><au>Sun, Yong Hou</au><au>Huang, Mei Fa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Garbage Crusher Fault Diagnosis Based on RBF Neural Network</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2009-10-01</date><risdate>2009</risdate><volume>16-19</volume><spage>971</spage><epage>975</epage><pages>971-975</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9780878492992</isbn><isbn>0878492992</isbn><abstract>The garbage crusher is a new kind of crusher for garbage crushing when processing Municipal Solid Waste (MSW). With the development of automatic equipment and the complication of structure and properties of the garbage crusher, the fault diagnosis of garbage crusher is very important. In this paper, according to the fault symptoms and parameters, Radial Basis Function Neural Network (RBF NN) is used for fault diagnosis of the garbage crusher. The structure and inference of RBF NN are discussed in detail. The garbage crusher fault diagnosis model is established based on RBF network. At last, the fault of mechanical system is taken as an example of garbage crusher fault diagnosis. Training simulation results of the neural network are given base on MATLAB software. The result shows the RBF NN is suitable for fault diagnosis of garbage crusher.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.16-19.971</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2009-10, Vol.16-19, p.971-975
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1443815868
source Scientific.net Journals
title Garbage Crusher Fault Diagnosis Based on RBF Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A33%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Garbage%20Crusher%20Fault%20Diagnosis%20Based%20on%20RBF%20Neural%20Network&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Li,%20Cong&rft.date=2009-10-01&rft.volume=16-19&rft.spage=971&rft.epage=975&rft.pages=971-975&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9780878492992&rft.isbn_list=0878492992&rft_id=info:doi/10.4028/www.scientific.net/AMM.16-19.971&rft_dat=%3Cproquest_cross%3E3105552721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443815868&rft_id=info:pmid/&rfr_iscdi=true