Research on Chaos Feature and Forecasting of Air Conditioning Load

Evolution law on air conditioning load is affected by many factors which are very difficult to be known and gained, that which results in low precision of simulation and forecast. Based on analysis on chaos characteristic of air conditioning load time series, BP neural networks model based on chaos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2010-08, Vol.29-32, p.2205-2210
Hauptverfasser: Liu, Hui Qing, Feng, Wen Hong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2210
container_issue
container_start_page 2205
container_title Applied Mechanics and Materials
container_volume 29-32
creator Liu, Hui Qing
Feng, Wen Hong
description Evolution law on air conditioning load is affected by many factors which are very difficult to be known and gained, that which results in low precision of simulation and forecast. Based on analysis on chaos characteristic of air conditioning load time series, BP neural networks model based on chaos phase space is proposed to forecast air conditioning load through embedding dimension. Considering influence of dynamical factor of air conditioning load as well as difficulty of calculating number of input cell, the model is provided with strong nonlinear mapping capacity, is applied to simulate and forecast air conditioning load, the outcomes is reasonable and higher precision.
doi_str_mv 10.4028/www.scientific.net/AMM.29-32.2205
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1443790065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3105480371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-59c4900c9530cda3c7f16cbcaad2f4694070ba921d32625740f07eb93bceb03</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMfoM79h4BXXrQ7TdKkuazFqbAhqPchTVPXoclMMob_3s4JeunVgfe8PC88CF0XkDMg1Wy32-XRDNaloR9M7mya1ctlTmRGSU4IlEfovOCcZIJV5BhNpaigEhWThJXy5PsHmaSUn6GLGNcAnBWsOkc3TzZaHcwKe4eblfYRz61O22Cxdh2e-2CNjmlwr9j3uB4CbrzrhjR4t88WXneX6LTXb9FOf-4EPc9vX5r7bPF499DUi8xQKFJWSsMkgJElBdNpakRfcNMarTvSMy4ZCGi1JEVHCSelYNCDsK2krbEt0Am6OlA3wX9sbUxq7bfBjYOqYIyKEc3LsVUfWib4GIPt1SYM7zp8qgLUXqQaRapfkWoUqUaRikhFidqLHBnNgZGCdjFZs_oz9W_KF56lgns</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443790065</pqid></control><display><type>article</type><title>Research on Chaos Feature and Forecasting of Air Conditioning Load</title><source>Scientific.net Journals</source><creator>Liu, Hui Qing ; Feng, Wen Hong</creator><creatorcontrib>Liu, Hui Qing ; Feng, Wen Hong</creatorcontrib><description>Evolution law on air conditioning load is affected by many factors which are very difficult to be known and gained, that which results in low precision of simulation and forecast. Based on analysis on chaos characteristic of air conditioning load time series, BP neural networks model based on chaos phase space is proposed to forecast air conditioning load through embedding dimension. Considering influence of dynamical factor of air conditioning load as well as difficulty of calculating number of input cell, the model is provided with strong nonlinear mapping capacity, is applied to simulate and forecast air conditioning load, the outcomes is reasonable and higher precision.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9780878492459</identifier><identifier>ISBN: 0878492453</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.29-32.2205</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2010-08, Vol.29-32, p.2205-2210</ispartof><rights>2010 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Aug 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-59c4900c9530cda3c7f16cbcaad2f4694070ba921d32625740f07eb93bceb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/979?width=600</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Liu, Hui Qing</creatorcontrib><creatorcontrib>Feng, Wen Hong</creatorcontrib><title>Research on Chaos Feature and Forecasting of Air Conditioning Load</title><title>Applied Mechanics and Materials</title><description>Evolution law on air conditioning load is affected by many factors which are very difficult to be known and gained, that which results in low precision of simulation and forecast. Based on analysis on chaos characteristic of air conditioning load time series, BP neural networks model based on chaos phase space is proposed to forecast air conditioning load through embedding dimension. Considering influence of dynamical factor of air conditioning load as well as difficulty of calculating number of input cell, the model is provided with strong nonlinear mapping capacity, is applied to simulate and forecast air conditioning load, the outcomes is reasonable and higher precision.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9780878492459</isbn><isbn>0878492453</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkF1LwzAUhoMfoM79h4BXXrQ7TdKkuazFqbAhqPchTVPXoclMMob_3s4JeunVgfe8PC88CF0XkDMg1Wy32-XRDNaloR9M7mya1ctlTmRGSU4IlEfovOCcZIJV5BhNpaigEhWThJXy5PsHmaSUn6GLGNcAnBWsOkc3TzZaHcwKe4eblfYRz61O22Cxdh2e-2CNjmlwr9j3uB4CbrzrhjR4t88WXneX6LTXb9FOf-4EPc9vX5r7bPF499DUi8xQKFJWSsMkgJElBdNpakRfcNMarTvSMy4ZCGi1JEVHCSelYNCDsK2krbEt0Am6OlA3wX9sbUxq7bfBjYOqYIyKEc3LsVUfWib4GIPt1SYM7zp8qgLUXqQaRapfkWoUqUaRikhFidqLHBnNgZGCdjFZs_oz9W_KF56lgns</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Liu, Hui Qing</creator><creator>Feng, Wen Hong</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20100801</creationdate><title>Research on Chaos Feature and Forecasting of Air Conditioning Load</title><author>Liu, Hui Qing ; Feng, Wen Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-59c4900c9530cda3c7f16cbcaad2f4694070ba921d32625740f07eb93bceb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Hui Qing</creatorcontrib><creatorcontrib>Feng, Wen Hong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Hui Qing</au><au>Feng, Wen Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Chaos Feature and Forecasting of Air Conditioning Load</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>29-32</volume><spage>2205</spage><epage>2210</epage><pages>2205-2210</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9780878492459</isbn><isbn>0878492453</isbn><abstract>Evolution law on air conditioning load is affected by many factors which are very difficult to be known and gained, that which results in low precision of simulation and forecast. Based on analysis on chaos characteristic of air conditioning load time series, BP neural networks model based on chaos phase space is proposed to forecast air conditioning load through embedding dimension. Considering influence of dynamical factor of air conditioning load as well as difficulty of calculating number of input cell, the model is provided with strong nonlinear mapping capacity, is applied to simulate and forecast air conditioning load, the outcomes is reasonable and higher precision.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.29-32.2205</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2010-08, Vol.29-32, p.2205-2210
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1443790065
source Scientific.net Journals
title Research on Chaos Feature and Forecasting of Air Conditioning Load
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A05%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Chaos%20Feature%20and%20Forecasting%20of%20Air%20Conditioning%20Load&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Liu,%20Hui%20Qing&rft.date=2010-08-01&rft.volume=29-32&rft.spage=2205&rft.epage=2210&rft.pages=2205-2210&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9780878492459&rft.isbn_list=0878492453&rft_id=info:doi/10.4028/www.scientific.net/AMM.29-32.2205&rft_dat=%3Cproquest_cross%3E3105480371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443790065&rft_id=info:pmid/&rfr_iscdi=true