Research on Chaos Feature and Forecasting of Air Conditioning Load
Evolution law on air conditioning load is affected by many factors which are very difficult to be known and gained, that which results in low precision of simulation and forecast. Based on analysis on chaos characteristic of air conditioning load time series, BP neural networks model based on chaos...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2010-08, Vol.29-32, p.2205-2210 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2210 |
---|---|
container_issue | |
container_start_page | 2205 |
container_title | Applied Mechanics and Materials |
container_volume | 29-32 |
creator | Liu, Hui Qing Feng, Wen Hong |
description | Evolution law on air conditioning load is affected by many factors which are very difficult to be known and gained, that which results in low precision of simulation and forecast. Based on analysis on chaos characteristic of air conditioning load time series, BP neural networks model based on chaos phase space is proposed to forecast air conditioning load through embedding dimension. Considering influence of dynamical factor of air conditioning load as well as difficulty of calculating number of input cell, the model is provided with strong nonlinear mapping capacity, is applied to simulate and forecast air conditioning load, the outcomes is reasonable and higher precision. |
doi_str_mv | 10.4028/www.scientific.net/AMM.29-32.2205 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1443790065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3105480371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-59c4900c9530cda3c7f16cbcaad2f4694070ba921d32625740f07eb93bceb03</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMfoM79h4BXXrQ7TdKkuazFqbAhqPchTVPXoclMMob_3s4JeunVgfe8PC88CF0XkDMg1Wy32-XRDNaloR9M7mya1ctlTmRGSU4IlEfovOCcZIJV5BhNpaigEhWThJXy5PsHmaSUn6GLGNcAnBWsOkc3TzZaHcwKe4eblfYRz61O22Cxdh2e-2CNjmlwr9j3uB4CbrzrhjR4t88WXneX6LTXb9FOf-4EPc9vX5r7bPF499DUi8xQKFJWSsMkgJElBdNpakRfcNMarTvSMy4ZCGi1JEVHCSelYNCDsK2krbEt0Am6OlA3wX9sbUxq7bfBjYOqYIyKEc3LsVUfWib4GIPt1SYM7zp8qgLUXqQaRapfkWoUqUaRikhFidqLHBnNgZGCdjFZs_oz9W_KF56lgns</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443790065</pqid></control><display><type>article</type><title>Research on Chaos Feature and Forecasting of Air Conditioning Load</title><source>Scientific.net Journals</source><creator>Liu, Hui Qing ; Feng, Wen Hong</creator><creatorcontrib>Liu, Hui Qing ; Feng, Wen Hong</creatorcontrib><description>Evolution law on air conditioning load is affected by many factors which are very difficult to be known and gained, that which results in low precision of simulation and forecast. Based on analysis on chaos characteristic of air conditioning load time series, BP neural networks model based on chaos phase space is proposed to forecast air conditioning load through embedding dimension. Considering influence of dynamical factor of air conditioning load as well as difficulty of calculating number of input cell, the model is provided with strong nonlinear mapping capacity, is applied to simulate and forecast air conditioning load, the outcomes is reasonable and higher precision.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9780878492459</identifier><identifier>ISBN: 0878492453</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.29-32.2205</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2010-08, Vol.29-32, p.2205-2210</ispartof><rights>2010 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Aug 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-59c4900c9530cda3c7f16cbcaad2f4694070ba921d32625740f07eb93bceb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/979?width=600</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Liu, Hui Qing</creatorcontrib><creatorcontrib>Feng, Wen Hong</creatorcontrib><title>Research on Chaos Feature and Forecasting of Air Conditioning Load</title><title>Applied Mechanics and Materials</title><description>Evolution law on air conditioning load is affected by many factors which are very difficult to be known and gained, that which results in low precision of simulation and forecast. Based on analysis on chaos characteristic of air conditioning load time series, BP neural networks model based on chaos phase space is proposed to forecast air conditioning load through embedding dimension. Considering influence of dynamical factor of air conditioning load as well as difficulty of calculating number of input cell, the model is provided with strong nonlinear mapping capacity, is applied to simulate and forecast air conditioning load, the outcomes is reasonable and higher precision.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9780878492459</isbn><isbn>0878492453</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkF1LwzAUhoMfoM79h4BXXrQ7TdKkuazFqbAhqPchTVPXoclMMob_3s4JeunVgfe8PC88CF0XkDMg1Wy32-XRDNaloR9M7mya1ctlTmRGSU4IlEfovOCcZIJV5BhNpaigEhWThJXy5PsHmaSUn6GLGNcAnBWsOkc3TzZaHcwKe4eblfYRz61O22Cxdh2e-2CNjmlwr9j3uB4CbrzrhjR4t88WXneX6LTXb9FOf-4EPc9vX5r7bPF499DUi8xQKFJWSsMkgJElBdNpakRfcNMarTvSMy4ZCGi1JEVHCSelYNCDsK2krbEt0Am6OlA3wX9sbUxq7bfBjYOqYIyKEc3LsVUfWib4GIPt1SYM7zp8qgLUXqQaRapfkWoUqUaRikhFidqLHBnNgZGCdjFZs_oz9W_KF56lgns</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Liu, Hui Qing</creator><creator>Feng, Wen Hong</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20100801</creationdate><title>Research on Chaos Feature and Forecasting of Air Conditioning Load</title><author>Liu, Hui Qing ; Feng, Wen Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-59c4900c9530cda3c7f16cbcaad2f4694070ba921d32625740f07eb93bceb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Hui Qing</creatorcontrib><creatorcontrib>Feng, Wen Hong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Hui Qing</au><au>Feng, Wen Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Chaos Feature and Forecasting of Air Conditioning Load</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>29-32</volume><spage>2205</spage><epage>2210</epage><pages>2205-2210</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9780878492459</isbn><isbn>0878492453</isbn><abstract>Evolution law on air conditioning load is affected by many factors which are very difficult to be known and gained, that which results in low precision of simulation and forecast. Based on analysis on chaos characteristic of air conditioning load time series, BP neural networks model based on chaos phase space is proposed to forecast air conditioning load through embedding dimension. Considering influence of dynamical factor of air conditioning load as well as difficulty of calculating number of input cell, the model is provided with strong nonlinear mapping capacity, is applied to simulate and forecast air conditioning load, the outcomes is reasonable and higher precision.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.29-32.2205</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2010-08, Vol.29-32, p.2205-2210 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_journals_1443790065 |
source | Scientific.net Journals |
title | Research on Chaos Feature and Forecasting of Air Conditioning Load |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A05%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Chaos%20Feature%20and%20Forecasting%20of%20Air%20Conditioning%20Load&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Liu,%20Hui%20Qing&rft.date=2010-08-01&rft.volume=29-32&rft.spage=2205&rft.epage=2210&rft.pages=2205-2210&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9780878492459&rft.isbn_list=0878492453&rft_id=info:doi/10.4028/www.scientific.net/AMM.29-32.2205&rft_dat=%3Cproquest_cross%3E3105480371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443790065&rft_id=info:pmid/&rfr_iscdi=true |