Clustering Techniques in Web Content Mining
Clustering is useful technique in the field of textual data mining. Cluster analysis divides objects into meaningful groups based on similarity between objects. Copious material is available from the World Wide Web (WWW) in response to any user-provided query. It becomes tedious for the user to manu...
Gespeichert in:
Veröffentlicht in: | International journal of advanced research in computer science 2010-11, Vol.1 (4) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | International journal of advanced research in computer science |
container_volume | 1 |
creator | Keole, Ranjit Ramesh Bamnote, G R |
description | Clustering is useful technique in the field of textual data mining. Cluster analysis divides objects into meaningful groups based on similarity between objects. Copious material is available from the World Wide Web (WWW) in response to any user-provided query. It becomes tedious for the user to manually extract real required information from this material. Large document collections, such as those delivered by Internet search engines, are difficult and time-consuming for users to read and analyze. The detection of common and distinctive topics within a document set, together with the generation of multi-document summaries, can greatly ease the burden of information management. This paper focus on this problem of mining the useful information from the collected web documents using fuzzy clustering of the text collected from the downloaded web documents. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1443703763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3105242141</sourcerecordid><originalsourceid>FETCH-proquest_journals_14437037633</originalsourceid><addsrcrecordid>eNpjYuA0sDQ30zU1szTnYOAtLs4yAAJjS0szEwNOBm3nnNLiktSizLx0hZDU5Iy8zMLS1GKFzDyF8NQkBef8vJLUvBIF38w8oAIeBta0xJziVF4ozc2g7OYa4uyhW1CUD9JVEp-VX1qUB5SKNzQxMTY3MDY3MzYmThUATQAxIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443703763</pqid></control><display><type>article</type><title>Clustering Techniques in Web Content Mining</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Keole, Ranjit Ramesh ; Bamnote, G R</creator><creatorcontrib>Keole, Ranjit Ramesh ; Bamnote, G R</creatorcontrib><description>Clustering is useful technique in the field of textual data mining. Cluster analysis divides objects into meaningful groups based on similarity between objects. Copious material is available from the World Wide Web (WWW) in response to any user-provided query. It becomes tedious for the user to manually extract real required information from this material. Large document collections, such as those delivered by Internet search engines, are difficult and time-consuming for users to read and analyze. The detection of common and distinctive topics within a document set, together with the generation of multi-document summaries, can greatly ease the burden of information management. This paper focus on this problem of mining the useful information from the collected web documents using fuzzy clustering of the text collected from the downloaded web documents.</description><identifier>EISSN: 0976-5697</identifier><language>eng</language><publisher>Udaipur: International Journal of Advanced Research in Computer Science</publisher><subject>Algorithms ; Cluster analysis ; Clustering ; Computer science ; Data mining ; Knowledge ; World Wide Web</subject><ispartof>International journal of advanced research in computer science, 2010-11, Vol.1 (4)</ispartof><rights>Copyright International Journal of Advanced Research in Computer Science Nov 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Keole, Ranjit Ramesh</creatorcontrib><creatorcontrib>Bamnote, G R</creatorcontrib><title>Clustering Techniques in Web Content Mining</title><title>International journal of advanced research in computer science</title><description>Clustering is useful technique in the field of textual data mining. Cluster analysis divides objects into meaningful groups based on similarity between objects. Copious material is available from the World Wide Web (WWW) in response to any user-provided query. It becomes tedious for the user to manually extract real required information from this material. Large document collections, such as those delivered by Internet search engines, are difficult and time-consuming for users to read and analyze. The detection of common and distinctive topics within a document set, together with the generation of multi-document summaries, can greatly ease the burden of information management. This paper focus on this problem of mining the useful information from the collected web documents using fuzzy clustering of the text collected from the downloaded web documents.</description><subject>Algorithms</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Computer science</subject><subject>Data mining</subject><subject>Knowledge</subject><subject>World Wide Web</subject><issn>0976-5697</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0sDQ30zU1szTnYOAtLs4yAAJjS0szEwNOBm3nnNLiktSizLx0hZDU5Iy8zMLS1GKFzDyF8NQkBef8vJLUvBIF38w8oAIeBta0xJziVF4ozc2g7OYa4uyhW1CUD9JVEp-VX1qUB5SKNzQxMTY3MDY3MzYmThUATQAxIA</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Keole, Ranjit Ramesh</creator><creator>Bamnote, G R</creator><general>International Journal of Advanced Research in Computer Science</general><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20101101</creationdate><title>Clustering Techniques in Web Content Mining</title><author>Keole, Ranjit Ramesh ; Bamnote, G R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_14437037633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Computer science</topic><topic>Data mining</topic><topic>Knowledge</topic><topic>World Wide Web</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keole, Ranjit Ramesh</creatorcontrib><creatorcontrib>Bamnote, G R</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced research in computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keole, Ranjit Ramesh</au><au>Bamnote, G R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clustering Techniques in Web Content Mining</atitle><jtitle>International journal of advanced research in computer science</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>1</volume><issue>4</issue><eissn>0976-5697</eissn><abstract>Clustering is useful technique in the field of textual data mining. Cluster analysis divides objects into meaningful groups based on similarity between objects. Copious material is available from the World Wide Web (WWW) in response to any user-provided query. It becomes tedious for the user to manually extract real required information from this material. Large document collections, such as those delivered by Internet search engines, are difficult and time-consuming for users to read and analyze. The detection of common and distinctive topics within a document set, together with the generation of multi-document summaries, can greatly ease the burden of information management. This paper focus on this problem of mining the useful information from the collected web documents using fuzzy clustering of the text collected from the downloaded web documents.</abstract><cop>Udaipur</cop><pub>International Journal of Advanced Research in Computer Science</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 0976-5697 |
ispartof | International journal of advanced research in computer science, 2010-11, Vol.1 (4) |
issn | 0976-5697 |
language | eng |
recordid | cdi_proquest_journals_1443703763 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Cluster analysis Clustering Computer science Data mining Knowledge World Wide Web |
title | Clustering Techniques in Web Content Mining |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A28%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clustering%20Techniques%20in%20Web%20Content%20Mining&rft.jtitle=International%20journal%20of%20advanced%20research%20in%20computer%20science&rft.au=Keole,%20Ranjit%20Ramesh&rft.date=2010-11-01&rft.volume=1&rft.issue=4&rft.eissn=0976-5697&rft_id=info:doi/&rft_dat=%3Cproquest%3E3105242141%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443703763&rft_id=info:pmid/&rfr_iscdi=true |