Clustering Approach to Construct Knowledge Management for Statistics Concepts of University Students

The purpose of this study is to develop a methodology as to the knowledge management of concept structure for learners. Fuzzy clustering is adopted to implement classification so that learners of the same cluster have homogeneity and display common features of cognition diagnosis. In addition, fuzzy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2011-05, Vol.55-57, p.2197-2201
Hauptverfasser: Lin, Yuan Horng, Yih, Jeng Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2201
container_issue
container_start_page 2197
container_title Applied Mechanics and Materials
container_volume 55-57
creator Lin, Yuan Horng
Yih, Jeng Ming
description The purpose of this study is to develop a methodology as to the knowledge management of concept structure for learners. Fuzzy clustering is adopted to implement classification so that learners of the same cluster have homogeneity and display common features of cognition diagnosis. In addition, fuzzy clustering is based on information of concept scoring and caution index from polytomous student-problem chart. In the study, the empirical data is the assessment of statistics concepts from university students. The results show that there are four clusters and each cluster has its own cognitive characteristics. To sum up, the methodology can improve knowledge management in classroom more feasible. Finally, some recommendations and suggestions for future investigations are also discussed.
doi_str_mv 10.4028/www.scientific.net/AMM.55-57.2197
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1443590973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104813571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-67079026134e8d727b3135948f0b869c5752b55157dccc09ab08f4dba2123ca33</originalsourceid><addsrcrecordid>eNqNkLtOwzAUQC0eEuXxD5aYGJL6GdtjFfESrRiA2XIcpxi1SbEdKv4elyLByOThHp17fQC4wqhkiMjpdrsto_WuT77ztuxdms4Wi5LzgouSYCUOwARXFSkEk-QQXCghKaJCcqQUOfqeoUJRWp2A0xjfEKoYZnIC2no1xuSC75dwttmEwdhXmAZYD31MYbQJPvTDduXapYML05ulW-cbYDcE-JRM8jF5G3e0dZsU4dDBl95_uBB9-szE2GY6noPjzqyiu_h5z8DLzfVzfVfMH2_v69m8sBThVFQCCYVIhSlzshVENBRTrpjsUCMrZbngpOEcc9Faa5EyDZIdaxtDMKHWUHoGLvfe_I_30cWk34Yx9HmlxoxlFVJiR832lA1DjMF1ehP82oRPjZHexdY5tv6NrXNsnWNrzjUXehc7O-q9IwWTQzn7-mfVvy1fskaQig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443590973</pqid></control><display><type>article</type><title>Clustering Approach to Construct Knowledge Management for Statistics Concepts of University Students</title><source>Scientific.net Journals</source><creator>Lin, Yuan Horng ; Yih, Jeng Ming</creator><creatorcontrib>Lin, Yuan Horng ; Yih, Jeng Ming</creatorcontrib><description>The purpose of this study is to develop a methodology as to the knowledge management of concept structure for learners. Fuzzy clustering is adopted to implement classification so that learners of the same cluster have homogeneity and display common features of cognition diagnosis. In addition, fuzzy clustering is based on information of concept scoring and caution index from polytomous student-problem chart. In the study, the empirical data is the assessment of statistics concepts from university students. The results show that there are four clusters and each cluster has its own cognitive characteristics. To sum up, the methodology can improve knowledge management in classroom more feasible. Finally, some recommendations and suggestions for future investigations are also discussed.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783037850992</identifier><identifier>ISBN: 303785099X</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.55-57.2197</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Knowledge management</subject><ispartof>Applied Mechanics and Materials, 2011-05, Vol.55-57, p.2197-2201</ispartof><rights>2011 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. May 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-67079026134e8d727b3135948f0b869c5752b55157dccc09ab08f4dba2123ca33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/1245?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lin, Yuan Horng</creatorcontrib><creatorcontrib>Yih, Jeng Ming</creatorcontrib><title>Clustering Approach to Construct Knowledge Management for Statistics Concepts of University Students</title><title>Applied Mechanics and Materials</title><description>The purpose of this study is to develop a methodology as to the knowledge management of concept structure for learners. Fuzzy clustering is adopted to implement classification so that learners of the same cluster have homogeneity and display common features of cognition diagnosis. In addition, fuzzy clustering is based on information of concept scoring and caution index from polytomous student-problem chart. In the study, the empirical data is the assessment of statistics concepts from university students. The results show that there are four clusters and each cluster has its own cognitive characteristics. To sum up, the methodology can improve knowledge management in classroom more feasible. Finally, some recommendations and suggestions for future investigations are also discussed.</description><subject>Knowledge management</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783037850992</isbn><isbn>303785099X</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkLtOwzAUQC0eEuXxD5aYGJL6GdtjFfESrRiA2XIcpxi1SbEdKv4elyLByOThHp17fQC4wqhkiMjpdrsto_WuT77ztuxdms4Wi5LzgouSYCUOwARXFSkEk-QQXCghKaJCcqQUOfqeoUJRWp2A0xjfEKoYZnIC2no1xuSC75dwttmEwdhXmAZYD31MYbQJPvTDduXapYML05ulW-cbYDcE-JRM8jF5G3e0dZsU4dDBl95_uBB9-szE2GY6noPjzqyiu_h5z8DLzfVzfVfMH2_v69m8sBThVFQCCYVIhSlzshVENBRTrpjsUCMrZbngpOEcc9Faa5EyDZIdaxtDMKHWUHoGLvfe_I_30cWk34Yx9HmlxoxlFVJiR832lA1DjMF1ehP82oRPjZHexdY5tv6NrXNsnWNrzjUXehc7O-q9IwWTQzn7-mfVvy1fskaQig</recordid><startdate>20110503</startdate><enddate>20110503</enddate><creator>Lin, Yuan Horng</creator><creator>Yih, Jeng Ming</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20110503</creationdate><title>Clustering Approach to Construct Knowledge Management for Statistics Concepts of University Students</title><author>Lin, Yuan Horng ; Yih, Jeng Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-67079026134e8d727b3135948f0b869c5752b55157dccc09ab08f4dba2123ca33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Knowledge management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Yuan Horng</creatorcontrib><creatorcontrib>Yih, Jeng Ming</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Yuan Horng</au><au>Yih, Jeng Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clustering Approach to Construct Knowledge Management for Statistics Concepts of University Students</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2011-05-03</date><risdate>2011</risdate><volume>55-57</volume><spage>2197</spage><epage>2201</epage><pages>2197-2201</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783037850992</isbn><isbn>303785099X</isbn><abstract>The purpose of this study is to develop a methodology as to the knowledge management of concept structure for learners. Fuzzy clustering is adopted to implement classification so that learners of the same cluster have homogeneity and display common features of cognition diagnosis. In addition, fuzzy clustering is based on information of concept scoring and caution index from polytomous student-problem chart. In the study, the empirical data is the assessment of statistics concepts from university students. The results show that there are four clusters and each cluster has its own cognitive characteristics. To sum up, the methodology can improve knowledge management in classroom more feasible. Finally, some recommendations and suggestions for future investigations are also discussed.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.55-57.2197</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2011-05, Vol.55-57, p.2197-2201
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1443590973
source Scientific.net Journals
subjects Knowledge management
title Clustering Approach to Construct Knowledge Management for Statistics Concepts of University Students
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T14%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clustering%20Approach%20to%20Construct%20Knowledge%20Management%20for%20Statistics%20Concepts%20of%20University%20Students&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Lin,%20Yuan%20Horng&rft.date=2011-05-03&rft.volume=55-57&rft.spage=2197&rft.epage=2201&rft.pages=2197-2201&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783037850992&rft.isbn_list=303785099X&rft_id=info:doi/10.4028/www.scientific.net/AMM.55-57.2197&rft_dat=%3Cproquest_cross%3E3104813571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443590973&rft_id=info:pmid/&rfr_iscdi=true