Quantum Particle Swarm Optimization Algorithm

Based on the problem of traditional particle swarm optimization (PSO) easily trapping into local optima, quantum theory is introduced into PSO to strengthen particles’ diversities and avoid the premature convergence effectively. Experimental results show that this method proposed by this paper has s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2011-06, Vol.63-64, p.106-110
Hauptverfasser: Xu, Yu Fa, Gao, Jie, Chen, Guo Chu, Yu, Jin Shou
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110
container_issue
container_start_page 106
container_title Applied Mechanics and Materials
container_volume 63-64
creator Xu, Yu Fa
Gao, Jie
Chen, Guo Chu
Yu, Jin Shou
description Based on the problem of traditional particle swarm optimization (PSO) easily trapping into local optima, quantum theory is introduced into PSO to strengthen particles’ diversities and avoid the premature convergence effectively. Experimental results show that this method proposed by this paper has stronger optimal ability and better global searching capability than PSO.
doi_str_mv 10.4028/www.scientific.net/AMM.63-64.106
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1443547985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104657091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-f20a23a4ad2f554e642d5959792b439cfd7a2df2732741d5b4ba3a06e2f47d103</originalsourceid><addsrcrecordid>eNqNkDtPwzAURi0eEqX0P1RiYUnqx7WdbJSKl9SqIGC23MSmrpqk2I4i-PUEigQj0x3u0fmkg9AFwSlgmk26rktD4UwdnXVFWps4mS4WqWCJgJRgcYAGRAiaSMjoIRrlMmOYyYwTJsnR9w8nOWPiBJ2GsMFYAIFsgJLHVtexrcYP2kdXbM34qdO-Gi930VXuQ0fX1OPp9rXxLq6rM3Rs9TaY0c8dopeb6-fZXTJf3t7PpvOkYILGxFKsKdOgS2o5ByOAljznuczpClhe2FJqWloqGZVASr6ClWYaC0MtyJJgNkTne-_ON2-tCVFtmtbX_aQiAIyDzDPeU5d7qvBNCN5YtfOu0v5dEay-oqk-mvqNpvpoqo-mBFMCekj0iqu9Inpdh2iK9Z-l_0o-AXHwe5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443547985</pqid></control><display><type>article</type><title>Quantum Particle Swarm Optimization Algorithm</title><source>Scientific.net Journals</source><creator>Xu, Yu Fa ; Gao, Jie ; Chen, Guo Chu ; Yu, Jin Shou</creator><creatorcontrib>Xu, Yu Fa ; Gao, Jie ; Chen, Guo Chu ; Yu, Jin Shou</creatorcontrib><description>Based on the problem of traditional particle swarm optimization (PSO) easily trapping into local optima, quantum theory is introduced into PSO to strengthen particles’ diversities and avoid the premature convergence effectively. Experimental results show that this method proposed by this paper has stronger optimal ability and better global searching capability than PSO.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783037851371</identifier><identifier>ISBN: 3037851376</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.63-64.106</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2011-06, Vol.63-64, p.106-110</ispartof><rights>2011 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jun 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-f20a23a4ad2f554e642d5959792b439cfd7a2df2732741d5b4ba3a06e2f47d103</citedby><cites>FETCH-LOGICAL-c362t-f20a23a4ad2f554e642d5959792b439cfd7a2df2732741d5b4ba3a06e2f47d103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/1280?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Xu, Yu Fa</creatorcontrib><creatorcontrib>Gao, Jie</creatorcontrib><creatorcontrib>Chen, Guo Chu</creatorcontrib><creatorcontrib>Yu, Jin Shou</creatorcontrib><title>Quantum Particle Swarm Optimization Algorithm</title><title>Applied Mechanics and Materials</title><description>Based on the problem of traditional particle swarm optimization (PSO) easily trapping into local optima, quantum theory is introduced into PSO to strengthen particles’ diversities and avoid the premature convergence effectively. Experimental results show that this method proposed by this paper has stronger optimal ability and better global searching capability than PSO.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783037851371</isbn><isbn>3037851376</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkDtPwzAURi0eEqX0P1RiYUnqx7WdbJSKl9SqIGC23MSmrpqk2I4i-PUEigQj0x3u0fmkg9AFwSlgmk26rktD4UwdnXVFWps4mS4WqWCJgJRgcYAGRAiaSMjoIRrlMmOYyYwTJsnR9w8nOWPiBJ2GsMFYAIFsgJLHVtexrcYP2kdXbM34qdO-Gi930VXuQ0fX1OPp9rXxLq6rM3Rs9TaY0c8dopeb6-fZXTJf3t7PpvOkYILGxFKsKdOgS2o5ByOAljznuczpClhe2FJqWloqGZVASr6ClWYaC0MtyJJgNkTne-_ON2-tCVFtmtbX_aQiAIyDzDPeU5d7qvBNCN5YtfOu0v5dEay-oqk-mvqNpvpoqo-mBFMCekj0iqu9Inpdh2iK9Z-l_0o-AXHwe5A</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Xu, Yu Fa</creator><creator>Gao, Jie</creator><creator>Chen, Guo Chu</creator><creator>Yu, Jin Shou</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20110601</creationdate><title>Quantum Particle Swarm Optimization Algorithm</title><author>Xu, Yu Fa ; Gao, Jie ; Chen, Guo Chu ; Yu, Jin Shou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-f20a23a4ad2f554e642d5959792b439cfd7a2df2732741d5b4ba3a06e2f47d103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yu Fa</creatorcontrib><creatorcontrib>Gao, Jie</creatorcontrib><creatorcontrib>Chen, Guo Chu</creatorcontrib><creatorcontrib>Yu, Jin Shou</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yu Fa</au><au>Gao, Jie</au><au>Chen, Guo Chu</au><au>Yu, Jin Shou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Particle Swarm Optimization Algorithm</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>63-64</volume><spage>106</spage><epage>110</epage><pages>106-110</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783037851371</isbn><isbn>3037851376</isbn><abstract>Based on the problem of traditional particle swarm optimization (PSO) easily trapping into local optima, quantum theory is introduced into PSO to strengthen particles’ diversities and avoid the premature convergence effectively. Experimental results show that this method proposed by this paper has stronger optimal ability and better global searching capability than PSO.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.63-64.106</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2011-06, Vol.63-64, p.106-110
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1443547985
source Scientific.net Journals
title Quantum Particle Swarm Optimization Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Particle%20Swarm%20Optimization%20Algorithm&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Xu,%20Yu%20Fa&rft.date=2011-06-01&rft.volume=63-64&rft.spage=106&rft.epage=110&rft.pages=106-110&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783037851371&rft.isbn_list=3037851376&rft_id=info:doi/10.4028/www.scientific.net/AMM.63-64.106&rft_dat=%3Cproquest_cross%3E3104657091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443547985&rft_id=info:pmid/&rfr_iscdi=true