Quantum Particle Swarm Optimization Algorithm
Based on the problem of traditional particle swarm optimization (PSO) easily trapping into local optima, quantum theory is introduced into PSO to strengthen particles’ diversities and avoid the premature convergence effectively. Experimental results show that this method proposed by this paper has s...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2011-06, Vol.63-64, p.106-110 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110 |
---|---|
container_issue | |
container_start_page | 106 |
container_title | Applied Mechanics and Materials |
container_volume | 63-64 |
creator | Xu, Yu Fa Gao, Jie Chen, Guo Chu Yu, Jin Shou |
description | Based on the problem of traditional particle swarm optimization (PSO) easily trapping into local optima, quantum theory is introduced into PSO to strengthen particles’ diversities and avoid the premature convergence effectively. Experimental results show that this method proposed by this paper has stronger optimal ability and better global searching capability than PSO. |
doi_str_mv | 10.4028/www.scientific.net/AMM.63-64.106 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1443547985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104657091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-f20a23a4ad2f554e642d5959792b439cfd7a2df2732741d5b4ba3a06e2f47d103</originalsourceid><addsrcrecordid>eNqNkDtPwzAURi0eEqX0P1RiYUnqx7WdbJSKl9SqIGC23MSmrpqk2I4i-PUEigQj0x3u0fmkg9AFwSlgmk26rktD4UwdnXVFWps4mS4WqWCJgJRgcYAGRAiaSMjoIRrlMmOYyYwTJsnR9w8nOWPiBJ2GsMFYAIFsgJLHVtexrcYP2kdXbM34qdO-Gi930VXuQ0fX1OPp9rXxLq6rM3Rs9TaY0c8dopeb6-fZXTJf3t7PpvOkYILGxFKsKdOgS2o5ByOAljznuczpClhe2FJqWloqGZVASr6ClWYaC0MtyJJgNkTne-_ON2-tCVFtmtbX_aQiAIyDzDPeU5d7qvBNCN5YtfOu0v5dEay-oqk-mvqNpvpoqo-mBFMCekj0iqu9Inpdh2iK9Z-l_0o-AXHwe5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443547985</pqid></control><display><type>article</type><title>Quantum Particle Swarm Optimization Algorithm</title><source>Scientific.net Journals</source><creator>Xu, Yu Fa ; Gao, Jie ; Chen, Guo Chu ; Yu, Jin Shou</creator><creatorcontrib>Xu, Yu Fa ; Gao, Jie ; Chen, Guo Chu ; Yu, Jin Shou</creatorcontrib><description>Based on the problem of traditional particle swarm optimization (PSO) easily trapping into local optima, quantum theory is introduced into PSO to strengthen particles’ diversities and avoid the premature convergence effectively. Experimental results show that this method proposed by this paper has stronger optimal ability and better global searching capability than PSO.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783037851371</identifier><identifier>ISBN: 3037851376</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.63-64.106</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2011-06, Vol.63-64, p.106-110</ispartof><rights>2011 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jun 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-f20a23a4ad2f554e642d5959792b439cfd7a2df2732741d5b4ba3a06e2f47d103</citedby><cites>FETCH-LOGICAL-c362t-f20a23a4ad2f554e642d5959792b439cfd7a2df2732741d5b4ba3a06e2f47d103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/1280?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Xu, Yu Fa</creatorcontrib><creatorcontrib>Gao, Jie</creatorcontrib><creatorcontrib>Chen, Guo Chu</creatorcontrib><creatorcontrib>Yu, Jin Shou</creatorcontrib><title>Quantum Particle Swarm Optimization Algorithm</title><title>Applied Mechanics and Materials</title><description>Based on the problem of traditional particle swarm optimization (PSO) easily trapping into local optima, quantum theory is introduced into PSO to strengthen particles’ diversities and avoid the premature convergence effectively. Experimental results show that this method proposed by this paper has stronger optimal ability and better global searching capability than PSO.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783037851371</isbn><isbn>3037851376</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkDtPwzAURi0eEqX0P1RiYUnqx7WdbJSKl9SqIGC23MSmrpqk2I4i-PUEigQj0x3u0fmkg9AFwSlgmk26rktD4UwdnXVFWps4mS4WqWCJgJRgcYAGRAiaSMjoIRrlMmOYyYwTJsnR9w8nOWPiBJ2GsMFYAIFsgJLHVtexrcYP2kdXbM34qdO-Gi930VXuQ0fX1OPp9rXxLq6rM3Rs9TaY0c8dopeb6-fZXTJf3t7PpvOkYILGxFKsKdOgS2o5ByOAljznuczpClhe2FJqWloqGZVASr6ClWYaC0MtyJJgNkTne-_ON2-tCVFtmtbX_aQiAIyDzDPeU5d7qvBNCN5YtfOu0v5dEay-oqk-mvqNpvpoqo-mBFMCekj0iqu9Inpdh2iK9Z-l_0o-AXHwe5A</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Xu, Yu Fa</creator><creator>Gao, Jie</creator><creator>Chen, Guo Chu</creator><creator>Yu, Jin Shou</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20110601</creationdate><title>Quantum Particle Swarm Optimization Algorithm</title><author>Xu, Yu Fa ; Gao, Jie ; Chen, Guo Chu ; Yu, Jin Shou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-f20a23a4ad2f554e642d5959792b439cfd7a2df2732741d5b4ba3a06e2f47d103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yu Fa</creatorcontrib><creatorcontrib>Gao, Jie</creatorcontrib><creatorcontrib>Chen, Guo Chu</creatorcontrib><creatorcontrib>Yu, Jin Shou</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yu Fa</au><au>Gao, Jie</au><au>Chen, Guo Chu</au><au>Yu, Jin Shou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Particle Swarm Optimization Algorithm</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>63-64</volume><spage>106</spage><epage>110</epage><pages>106-110</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783037851371</isbn><isbn>3037851376</isbn><abstract>Based on the problem of traditional particle swarm optimization (PSO) easily trapping into local optima, quantum theory is introduced into PSO to strengthen particles’ diversities and avoid the premature convergence effectively. Experimental results show that this method proposed by this paper has stronger optimal ability and better global searching capability than PSO.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.63-64.106</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2011-06, Vol.63-64, p.106-110 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_journals_1443547985 |
source | Scientific.net Journals |
title | Quantum Particle Swarm Optimization Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Particle%20Swarm%20Optimization%20Algorithm&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Xu,%20Yu%20Fa&rft.date=2011-06-01&rft.volume=63-64&rft.spage=106&rft.epage=110&rft.pages=106-110&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783037851371&rft.isbn_list=3037851376&rft_id=info:doi/10.4028/www.scientific.net/AMM.63-64.106&rft_dat=%3Cproquest_cross%3E3104657091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443547985&rft_id=info:pmid/&rfr_iscdi=true |