Intelligent Displacement Back Analysis Method of Three-Dimension Applied in Unsymmetrical Pressure Tunnel with Shallow Depth

Artificial neural network has been widely used in displacement back analysis, but it has the problems of large sample, over-fitting, local optimization and poor generalization performance, so it has the poor adaptability in the Geotechnical Engineering. Support Vector Machines algorithm has the adva...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2011-09, Vol.90-93, p.2286-2291
Hauptverfasser: Wan, Liang Yong, Zhang, Xue Feng, Liu, Kai Yun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2291
container_issue
container_start_page 2286
container_title Applied Mechanics and Materials
container_volume 90-93
creator Wan, Liang Yong
Zhang, Xue Feng
Liu, Kai Yun
description Artificial neural network has been widely used in displacement back analysis, but it has the problems of large sample, over-fitting, local optimization and poor generalization performance, so it has the poor adaptability in the Geotechnical Engineering. Support Vector Machines algorithm has the advantages of small sample, global optimization and generalization performance. A direct optimization method based on genetic algorithm and the improved support vector regression algorithm (GA-SVR) is applied in order to identify multinomial parameters intelligently and forecast displacements fast and exactly, combined with an unsymmetrical pressure tunnel with shallow depth section of the left line of import in BEIKOU Tunnel on Zhangjiakou-Shijiazhuang highway. The application result shows the new type of intelligent displacement back analysis could obtain accurately the parameters of rock mechanics and initial stress in limited monitoring data and provide parameters for ahead-forecast of rock deformation.
doi_str_mv 10.4028/www.scientific.net/AMM.90-93.2286
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1443446601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104184981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-b75248dc6c8a2cdbad879e08fb0e5b6927553c77100b569e479dae841b5e709a3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0-JNrCf7DEiUNSJ3Zi-xh2C1TqCiS2Z8txJsTF6wTbq2glfjxeFgmOnEajefWMZh6E3lWkZKQWt-u6ltFY8MmO1pQe0m2325WSFJKWdS3aZ-iqatu64EzUz9E1JZSLpma1fPF7cM7R9hW6jvGJkJZVTFyhn_c-gXP2W8birY2L0wYO5-a9Nt9x57U7RRvxDtI0D3ge8X4KAMXW5lC0s8fdsjgLA7YeP_p4OhwgBWu0w18CxHgMgPdH78Hh1aYJf520c_OKt7Ck6TV6OWoX4c2feoMeP9ztN5-Kh88f7zfdQ2Fo26Si5_kKMZjWCF2bodeD4BKIGHsCTd_KmjcNNZxXhPRNK4FxOWgQrOob4ERqeoPeXrhLmH8cISb1NB9DPi2qijHKWH5OlVPdJWXCHGOAUS3BHnQ4qYqoswGVDai_BlQ2oLIBJYmSVJ0NZMbmwkhB-5jATP-s-m_KLy8vmQo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443446601</pqid></control><display><type>article</type><title>Intelligent Displacement Back Analysis Method of Three-Dimension Applied in Unsymmetrical Pressure Tunnel with Shallow Depth</title><source>Scientific.net Journals</source><creator>Wan, Liang Yong ; Zhang, Xue Feng ; Liu, Kai Yun</creator><creatorcontrib>Wan, Liang Yong ; Zhang, Xue Feng ; Liu, Kai Yun</creatorcontrib><description>Artificial neural network has been widely used in displacement back analysis, but it has the problems of large sample, over-fitting, local optimization and poor generalization performance, so it has the poor adaptability in the Geotechnical Engineering. Support Vector Machines algorithm has the advantages of small sample, global optimization and generalization performance. A direct optimization method based on genetic algorithm and the improved support vector regression algorithm (GA-SVR) is applied in order to identify multinomial parameters intelligently and forecast displacements fast and exactly, combined with an unsymmetrical pressure tunnel with shallow depth section of the left line of import in BEIKOU Tunnel on Zhangjiakou-Shijiazhuang highway. The application result shows the new type of intelligent displacement back analysis could obtain accurately the parameters of rock mechanics and initial stress in limited monitoring data and provide parameters for ahead-forecast of rock deformation.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3037852429</identifier><identifier>ISBN: 9783037852422</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.90-93.2286</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2011-09, Vol.90-93, p.2286-2291</ispartof><rights>2011 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Sep 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-b75248dc6c8a2cdbad879e08fb0e5b6927553c77100b569e479dae841b5e709a3</citedby><cites>FETCH-LOGICAL-c365t-b75248dc6c8a2cdbad879e08fb0e5b6927553c77100b569e479dae841b5e709a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/1446?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wan, Liang Yong</creatorcontrib><creatorcontrib>Zhang, Xue Feng</creatorcontrib><creatorcontrib>Liu, Kai Yun</creatorcontrib><title>Intelligent Displacement Back Analysis Method of Three-Dimension Applied in Unsymmetrical Pressure Tunnel with Shallow Depth</title><title>Applied Mechanics and Materials</title><description>Artificial neural network has been widely used in displacement back analysis, but it has the problems of large sample, over-fitting, local optimization and poor generalization performance, so it has the poor adaptability in the Geotechnical Engineering. Support Vector Machines algorithm has the advantages of small sample, global optimization and generalization performance. A direct optimization method based on genetic algorithm and the improved support vector regression algorithm (GA-SVR) is applied in order to identify multinomial parameters intelligently and forecast displacements fast and exactly, combined with an unsymmetrical pressure tunnel with shallow depth section of the left line of import in BEIKOU Tunnel on Zhangjiakou-Shijiazhuang highway. The application result shows the new type of intelligent displacement back analysis could obtain accurately the parameters of rock mechanics and initial stress in limited monitoring data and provide parameters for ahead-forecast of rock deformation.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3037852429</isbn><isbn>9783037852422</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkU1v1DAQhi0-JNrCf7DEiUNSJ3Zi-xh2C1TqCiS2Z8txJsTF6wTbq2glfjxeFgmOnEajefWMZh6E3lWkZKQWt-u6ltFY8MmO1pQe0m2325WSFJKWdS3aZ-iqatu64EzUz9E1JZSLpma1fPF7cM7R9hW6jvGJkJZVTFyhn_c-gXP2W8birY2L0wYO5-a9Nt9x57U7RRvxDtI0D3ge8X4KAMXW5lC0s8fdsjgLA7YeP_p4OhwgBWu0w18CxHgMgPdH78Hh1aYJf520c_OKt7Ck6TV6OWoX4c2feoMeP9ztN5-Kh88f7zfdQ2Fo26Si5_kKMZjWCF2bodeD4BKIGHsCTd_KmjcNNZxXhPRNK4FxOWgQrOob4ERqeoPeXrhLmH8cISb1NB9DPi2qijHKWH5OlVPdJWXCHGOAUS3BHnQ4qYqoswGVDai_BlQ2oLIBJYmSVJ0NZMbmwkhB-5jATP-s-m_KLy8vmQo</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Wan, Liang Yong</creator><creator>Zhang, Xue Feng</creator><creator>Liu, Kai Yun</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20110901</creationdate><title>Intelligent Displacement Back Analysis Method of Three-Dimension Applied in Unsymmetrical Pressure Tunnel with Shallow Depth</title><author>Wan, Liang Yong ; Zhang, Xue Feng ; Liu, Kai Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-b75248dc6c8a2cdbad879e08fb0e5b6927553c77100b569e479dae841b5e709a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Liang Yong</creatorcontrib><creatorcontrib>Zhang, Xue Feng</creatorcontrib><creatorcontrib>Liu, Kai Yun</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Liang Yong</au><au>Zhang, Xue Feng</au><au>Liu, Kai Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Displacement Back Analysis Method of Three-Dimension Applied in Unsymmetrical Pressure Tunnel with Shallow Depth</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2011-09-01</date><risdate>2011</risdate><volume>90-93</volume><spage>2286</spage><epage>2291</epage><pages>2286-2291</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3037852429</isbn><isbn>9783037852422</isbn><abstract>Artificial neural network has been widely used in displacement back analysis, but it has the problems of large sample, over-fitting, local optimization and poor generalization performance, so it has the poor adaptability in the Geotechnical Engineering. Support Vector Machines algorithm has the advantages of small sample, global optimization and generalization performance. A direct optimization method based on genetic algorithm and the improved support vector regression algorithm (GA-SVR) is applied in order to identify multinomial parameters intelligently and forecast displacements fast and exactly, combined with an unsymmetrical pressure tunnel with shallow depth section of the left line of import in BEIKOU Tunnel on Zhangjiakou-Shijiazhuang highway. The application result shows the new type of intelligent displacement back analysis could obtain accurately the parameters of rock mechanics and initial stress in limited monitoring data and provide parameters for ahead-forecast of rock deformation.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.90-93.2286</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2011-09, Vol.90-93, p.2286-2291
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1443446601
source Scientific.net Journals
title Intelligent Displacement Back Analysis Method of Three-Dimension Applied in Unsymmetrical Pressure Tunnel with Shallow Depth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A42%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Displacement%20Back%20Analysis%20Method%20of%20Three-Dimension%20Applied%20in%20Unsymmetrical%20Pressure%20Tunnel%20with%20Shallow%20Depth&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Wan,%20Liang%20Yong&rft.date=2011-09-01&rft.volume=90-93&rft.spage=2286&rft.epage=2291&rft.pages=2286-2291&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3037852429&rft.isbn_list=9783037852422&rft_id=info:doi/10.4028/www.scientific.net/AMM.90-93.2286&rft_dat=%3Cproquest_cross%3E3104184981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443446601&rft_id=info:pmid/&rfr_iscdi=true