Intelligent Displacement Back Analysis Method of Three-Dimension Applied in Unsymmetrical Pressure Tunnel with Shallow Depth
Artificial neural network has been widely used in displacement back analysis, but it has the problems of large sample, over-fitting, local optimization and poor generalization performance, so it has the poor adaptability in the Geotechnical Engineering. Support Vector Machines algorithm has the adva...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2011-09, Vol.90-93, p.2286-2291 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2291 |
---|---|
container_issue | |
container_start_page | 2286 |
container_title | Applied Mechanics and Materials |
container_volume | 90-93 |
creator | Wan, Liang Yong Zhang, Xue Feng Liu, Kai Yun |
description | Artificial neural network has been widely used in displacement back analysis, but it has the problems of large sample, over-fitting, local optimization and poor generalization performance, so it has the poor adaptability in the Geotechnical Engineering. Support Vector Machines algorithm has the advantages of small sample, global optimization and generalization performance. A direct optimization method based on genetic algorithm and the improved support vector regression algorithm (GA-SVR) is applied in order to identify multinomial parameters intelligently and forecast displacements fast and exactly, combined with an unsymmetrical pressure tunnel with shallow depth section of the left line of import in BEIKOU Tunnel on Zhangjiakou-Shijiazhuang highway. The application result shows the new type of intelligent displacement back analysis could obtain accurately the parameters of rock mechanics and initial stress in limited monitoring data and provide parameters for ahead-forecast of rock deformation. |
doi_str_mv | 10.4028/www.scientific.net/AMM.90-93.2286 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1443446601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104184981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-b75248dc6c8a2cdbad879e08fb0e5b6927553c77100b569e479dae841b5e709a3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0-JNrCf7DEiUNSJ3Zi-xh2C1TqCiS2Z8txJsTF6wTbq2glfjxeFgmOnEajefWMZh6E3lWkZKQWt-u6ltFY8MmO1pQe0m2325WSFJKWdS3aZ-iqatu64EzUz9E1JZSLpma1fPF7cM7R9hW6jvGJkJZVTFyhn_c-gXP2W8birY2L0wYO5-a9Nt9x57U7RRvxDtI0D3ge8X4KAMXW5lC0s8fdsjgLA7YeP_p4OhwgBWu0w18CxHgMgPdH78Hh1aYJf520c_OKt7Ck6TV6OWoX4c2feoMeP9ztN5-Kh88f7zfdQ2Fo26Si5_kKMZjWCF2bodeD4BKIGHsCTd_KmjcNNZxXhPRNK4FxOWgQrOob4ERqeoPeXrhLmH8cISb1NB9DPi2qijHKWH5OlVPdJWXCHGOAUS3BHnQ4qYqoswGVDai_BlQ2oLIBJYmSVJ0NZMbmwkhB-5jATP-s-m_KLy8vmQo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443446601</pqid></control><display><type>article</type><title>Intelligent Displacement Back Analysis Method of Three-Dimension Applied in Unsymmetrical Pressure Tunnel with Shallow Depth</title><source>Scientific.net Journals</source><creator>Wan, Liang Yong ; Zhang, Xue Feng ; Liu, Kai Yun</creator><creatorcontrib>Wan, Liang Yong ; Zhang, Xue Feng ; Liu, Kai Yun</creatorcontrib><description>Artificial neural network has been widely used in displacement back analysis, but it has the problems of large sample, over-fitting, local optimization and poor generalization performance, so it has the poor adaptability in the Geotechnical Engineering. Support Vector Machines algorithm has the advantages of small sample, global optimization and generalization performance. A direct optimization method based on genetic algorithm and the improved support vector regression algorithm (GA-SVR) is applied in order to identify multinomial parameters intelligently and forecast displacements fast and exactly, combined with an unsymmetrical pressure tunnel with shallow depth section of the left line of import in BEIKOU Tunnel on Zhangjiakou-Shijiazhuang highway. The application result shows the new type of intelligent displacement back analysis could obtain accurately the parameters of rock mechanics and initial stress in limited monitoring data and provide parameters for ahead-forecast of rock deformation.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3037852429</identifier><identifier>ISBN: 9783037852422</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.90-93.2286</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2011-09, Vol.90-93, p.2286-2291</ispartof><rights>2011 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Sep 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-b75248dc6c8a2cdbad879e08fb0e5b6927553c77100b569e479dae841b5e709a3</citedby><cites>FETCH-LOGICAL-c365t-b75248dc6c8a2cdbad879e08fb0e5b6927553c77100b569e479dae841b5e709a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/1446?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wan, Liang Yong</creatorcontrib><creatorcontrib>Zhang, Xue Feng</creatorcontrib><creatorcontrib>Liu, Kai Yun</creatorcontrib><title>Intelligent Displacement Back Analysis Method of Three-Dimension Applied in Unsymmetrical Pressure Tunnel with Shallow Depth</title><title>Applied Mechanics and Materials</title><description>Artificial neural network has been widely used in displacement back analysis, but it has the problems of large sample, over-fitting, local optimization and poor generalization performance, so it has the poor adaptability in the Geotechnical Engineering. Support Vector Machines algorithm has the advantages of small sample, global optimization and generalization performance. A direct optimization method based on genetic algorithm and the improved support vector regression algorithm (GA-SVR) is applied in order to identify multinomial parameters intelligently and forecast displacements fast and exactly, combined with an unsymmetrical pressure tunnel with shallow depth section of the left line of import in BEIKOU Tunnel on Zhangjiakou-Shijiazhuang highway. The application result shows the new type of intelligent displacement back analysis could obtain accurately the parameters of rock mechanics and initial stress in limited monitoring data and provide parameters for ahead-forecast of rock deformation.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3037852429</isbn><isbn>9783037852422</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkU1v1DAQhi0-JNrCf7DEiUNSJ3Zi-xh2C1TqCiS2Z8txJsTF6wTbq2glfjxeFgmOnEajefWMZh6E3lWkZKQWt-u6ltFY8MmO1pQe0m2325WSFJKWdS3aZ-iqatu64EzUz9E1JZSLpma1fPF7cM7R9hW6jvGJkJZVTFyhn_c-gXP2W8birY2L0wYO5-a9Nt9x57U7RRvxDtI0D3ge8X4KAMXW5lC0s8fdsjgLA7YeP_p4OhwgBWu0w18CxHgMgPdH78Hh1aYJf520c_OKt7Ck6TV6OWoX4c2feoMeP9ztN5-Kh88f7zfdQ2Fo26Si5_kKMZjWCF2bodeD4BKIGHsCTd_KmjcNNZxXhPRNK4FxOWgQrOob4ERqeoPeXrhLmH8cISb1NB9DPi2qijHKWH5OlVPdJWXCHGOAUS3BHnQ4qYqoswGVDai_BlQ2oLIBJYmSVJ0NZMbmwkhB-5jATP-s-m_KLy8vmQo</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Wan, Liang Yong</creator><creator>Zhang, Xue Feng</creator><creator>Liu, Kai Yun</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20110901</creationdate><title>Intelligent Displacement Back Analysis Method of Three-Dimension Applied in Unsymmetrical Pressure Tunnel with Shallow Depth</title><author>Wan, Liang Yong ; Zhang, Xue Feng ; Liu, Kai Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-b75248dc6c8a2cdbad879e08fb0e5b6927553c77100b569e479dae841b5e709a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Liang Yong</creatorcontrib><creatorcontrib>Zhang, Xue Feng</creatorcontrib><creatorcontrib>Liu, Kai Yun</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Liang Yong</au><au>Zhang, Xue Feng</au><au>Liu, Kai Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Displacement Back Analysis Method of Three-Dimension Applied in Unsymmetrical Pressure Tunnel with Shallow Depth</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2011-09-01</date><risdate>2011</risdate><volume>90-93</volume><spage>2286</spage><epage>2291</epage><pages>2286-2291</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3037852429</isbn><isbn>9783037852422</isbn><abstract>Artificial neural network has been widely used in displacement back analysis, but it has the problems of large sample, over-fitting, local optimization and poor generalization performance, so it has the poor adaptability in the Geotechnical Engineering. Support Vector Machines algorithm has the advantages of small sample, global optimization and generalization performance. A direct optimization method based on genetic algorithm and the improved support vector regression algorithm (GA-SVR) is applied in order to identify multinomial parameters intelligently and forecast displacements fast and exactly, combined with an unsymmetrical pressure tunnel with shallow depth section of the left line of import in BEIKOU Tunnel on Zhangjiakou-Shijiazhuang highway. The application result shows the new type of intelligent displacement back analysis could obtain accurately the parameters of rock mechanics and initial stress in limited monitoring data and provide parameters for ahead-forecast of rock deformation.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.90-93.2286</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2011-09, Vol.90-93, p.2286-2291 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_journals_1443446601 |
source | Scientific.net Journals |
title | Intelligent Displacement Back Analysis Method of Three-Dimension Applied in Unsymmetrical Pressure Tunnel with Shallow Depth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A42%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Displacement%20Back%20Analysis%20Method%20of%20Three-Dimension%20Applied%20in%20Unsymmetrical%20Pressure%20Tunnel%20with%20Shallow%20Depth&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Wan,%20Liang%20Yong&rft.date=2011-09-01&rft.volume=90-93&rft.spage=2286&rft.epage=2291&rft.pages=2286-2291&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3037852429&rft.isbn_list=9783037852422&rft_id=info:doi/10.4028/www.scientific.net/AMM.90-93.2286&rft_dat=%3Cproquest_cross%3E3104184981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443446601&rft_id=info:pmid/&rfr_iscdi=true |