An Improved LS-SVR Ensemble Learning in Internet Traffic Prediction

In this paper, we present a new method for internet traffic forecasting based on a boosting LS-SVR algorithm. AdaBoost has been proved to be an effective method for improving the performance of weak learning algorithms and widely applied to classification problems. Inspired by it, we use LS-SVR to c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2012-01, Vol.121-126, p.3794-3798
Hauptverfasser: Tian, Yong Mei, Li, Kun Lun, Xie, Jing, Ma, Ying Hui
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a new method for internet traffic forecasting based on a boosting LS-SVR algorithm. AdaBoost has been proved to be an effective method for improving the performance of weak learning algorithms and widely applied to classification problems. Inspired by it, we use LS-SVR to complete the initial training; and pay more attention on the “high error areas” in the time series; then, we use an ensemble learning algorithm to learn these areas.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.121-126.3794