Active Flow Control over the Car
Active flow control methods are used to reduce the aerodynamic drag over a car model. Method of Boundary layer suction at the top rear and air injection at the back of the car are used as the active flow control tools to suppress the aerodynamic drag. The computational results obtained using the sta...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2012-01, Vol.110-116, p.2521-2528 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2528 |
---|---|
container_issue | |
container_start_page | 2521 |
container_title | Applied Mechanics and Materials |
container_volume | 110-116 |
creator | Singh, Deepesh Kumar Bandyopadhyay, Gautam |
description | Active flow control methods are used to reduce the aerodynamic drag over a car model. Method of Boundary layer suction at the top rear and air injection at the back of the car are used as the active flow control tools to suppress the aerodynamic drag. The computational results obtained using the standard model for the car model are verified first against the practical results obtained by wind tunnel experimentation so as to obtain the range of turbulence. Then a parametric study on the effect of the drag and lift coefficient of the car with respect to the parameters governing the active flow control is done. The drag coefficient is reduced by 20.25% using this strategy with 19.4% increase in the lift coefficient. |
doi_str_mv | 10.4028/www.scientific.net/AMM.110-116.2521 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1443265415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103723351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-c48f529e36b7cb8582a11db252f026133bd3c07035901d37afff0612ba2f54a73</originalsourceid><addsrcrecordid>eNqVkE1LAzEQhoMfYFv9DwseZbeZfO32WJZWhRYveg7ZbEK31E1N0i7-e1Mr6NXDMId5ed7hQegBcMEwqabDMBRBd6aPne100Zs4na_XBQDOAURBOIELNAIhSF6yilyiMcW0rDgRhF59H3A-o1TcoHEIW4wFA1aNUDbXsTuabLlzQ1a7Pnq3y9zR-CxuTFYrf4uurdoFc_ezJ-htuXitn_LVy-NzPV_lmmIec80qy8nMUNGUuql4RRRA26S3LCYCKG1aqnGJKZ9haGmprLVYAGkUsZypkk7Q_Zm79-7jYEKUW3fwfaqUwBglgjPgKVWfU9q7ELyxcu-7d-U_JWB58iSTJ_nrSSZPMnmSyVMaIU-eEmVxpkSv-hCN3vwp-wfnC3K2dmI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443265415</pqid></control><display><type>article</type><title>Active Flow Control over the Car</title><source>Scientific.net Journals</source><creator>Singh, Deepesh Kumar ; Bandyopadhyay, Gautam</creator><creatorcontrib>Singh, Deepesh Kumar ; Bandyopadhyay, Gautam</creatorcontrib><description>Active flow control methods are used to reduce the aerodynamic drag over a car model. Method of Boundary layer suction at the top rear and air injection at the back of the car are used as the active flow control tools to suppress the aerodynamic drag. The computational results obtained using the standard model for the car model are verified first against the practical results obtained by wind tunnel experimentation so as to obtain the range of turbulence. Then a parametric study on the effect of the drag and lift coefficient of the car with respect to the parameters governing the active flow control is done. The drag coefficient is reduced by 20.25% using this strategy with 19.4% increase in the lift coefficient.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3037852623</identifier><identifier>ISBN: 9783037852620</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.110-116.2521</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2012-01, Vol.110-116, p.2521-2528</ispartof><rights>2012 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Oct 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c305t-c48f529e36b7cb8582a11db252f026133bd3c07035901d37afff0612ba2f54a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/1471?width=600</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Singh, Deepesh Kumar</creatorcontrib><creatorcontrib>Bandyopadhyay, Gautam</creatorcontrib><title>Active Flow Control over the Car</title><title>Applied Mechanics and Materials</title><description>Active flow control methods are used to reduce the aerodynamic drag over a car model. Method of Boundary layer suction at the top rear and air injection at the back of the car are used as the active flow control tools to suppress the aerodynamic drag. The computational results obtained using the standard model for the car model are verified first against the practical results obtained by wind tunnel experimentation so as to obtain the range of turbulence. Then a parametric study on the effect of the drag and lift coefficient of the car with respect to the parameters governing the active flow control is done. The drag coefficient is reduced by 20.25% using this strategy with 19.4% increase in the lift coefficient.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3037852623</isbn><isbn>9783037852620</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqVkE1LAzEQhoMfYFv9DwseZbeZfO32WJZWhRYveg7ZbEK31E1N0i7-e1Mr6NXDMId5ed7hQegBcMEwqabDMBRBd6aPne100Zs4na_XBQDOAURBOIELNAIhSF6yilyiMcW0rDgRhF59H3A-o1TcoHEIW4wFA1aNUDbXsTuabLlzQ1a7Pnq3y9zR-CxuTFYrf4uurdoFc_ezJ-htuXitn_LVy-NzPV_lmmIec80qy8nMUNGUuql4RRRA26S3LCYCKG1aqnGJKZ9haGmprLVYAGkUsZypkk7Q_Zm79-7jYEKUW3fwfaqUwBglgjPgKVWfU9q7ELyxcu-7d-U_JWB58iSTJ_nrSSZPMnmSyVMaIU-eEmVxpkSv-hCN3vwp-wfnC3K2dmI</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Singh, Deepesh Kumar</creator><creator>Bandyopadhyay, Gautam</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120101</creationdate><title>Active Flow Control over the Car</title><author>Singh, Deepesh Kumar ; Bandyopadhyay, Gautam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-c48f529e36b7cb8582a11db252f026133bd3c07035901d37afff0612ba2f54a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Deepesh Kumar</creatorcontrib><creatorcontrib>Bandyopadhyay, Gautam</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Deepesh Kumar</au><au>Bandyopadhyay, Gautam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active Flow Control over the Car</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>110-116</volume><spage>2521</spage><epage>2528</epage><pages>2521-2528</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3037852623</isbn><isbn>9783037852620</isbn><abstract>Active flow control methods are used to reduce the aerodynamic drag over a car model. Method of Boundary layer suction at the top rear and air injection at the back of the car are used as the active flow control tools to suppress the aerodynamic drag. The computational results obtained using the standard model for the car model are verified first against the practical results obtained by wind tunnel experimentation so as to obtain the range of turbulence. Then a parametric study on the effect of the drag and lift coefficient of the car with respect to the parameters governing the active flow control is done. The drag coefficient is reduced by 20.25% using this strategy with 19.4% increase in the lift coefficient.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.110-116.2521</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2012-01, Vol.110-116, p.2521-2528 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_journals_1443265415 |
source | Scientific.net Journals |
title | Active Flow Control over the Car |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T03%3A18%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20Flow%20Control%20over%20the%20Car&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Singh,%20Deepesh%20Kumar&rft.date=2012-01-01&rft.volume=110-116&rft.spage=2521&rft.epage=2528&rft.pages=2521-2528&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3037852623&rft.isbn_list=9783037852620&rft_id=info:doi/10.4028/www.scientific.net/AMM.110-116.2521&rft_dat=%3Cproquest_cross%3E3103723351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443265415&rft_id=info:pmid/&rfr_iscdi=true |