The Reinforcement Rib Performance Prediction Based on the BP Algorithm and the Finite Element Analysis

The reinforcement rib design is one of the key parts in entire bottle design. This paper presents the rib performance prediction system based on the BP algorithm and the finite element analysis, which adopts the finite element analysis results as its learning samples, sets up the rib performance pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2012-01, Vol.101-102, p.212-215
Hauptverfasser: Li, Xiang Sheng, Su, Liang Yao, Ruan, Shang Wen, Yin, Xiong Fei, Feng, Xiao Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 215
container_issue
container_start_page 212
container_title Applied Mechanics and Materials
container_volume 101-102
creator Li, Xiang Sheng
Su, Liang Yao
Ruan, Shang Wen
Yin, Xiong Fei
Feng, Xiao Yan
description The reinforcement rib design is one of the key parts in entire bottle design. This paper presents the rib performance prediction system based on the BP algorithm and the finite element analysis, which adopts the finite element analysis results as its learning samples, sets up the rib performance prediction system with BP artificial neural network. The results show that the artificial neural network plays an important role in rib performance prediction; meanwhile it can guide the bottle design in practical terms.
doi_str_mv 10.4028/www.scientific.net/AMM.101-102.212
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1443259290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103687921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-42775b5537c2249f3169abcea582f54c23211e2d93305c09dc30e182915dd7463</originalsourceid><addsrcrecordid>eNqNkEtPGzEQgC3aSgXa_2CJW6Vd7LG9j2NCw0MCNUL0bDneWWKUeKltFPHvGQhSOXKwbM3jm_HH2C8pai2gO93tdnX2AWMJY_B1xHI6u7mppZCVFFCDhAN2KJsGqlZ38IUdKaHazoDp1de3hKh6pZrv7CjnByEaLXV3yMa7NfJbDHGcksct0fltWPElJgpsXfTIlwmH4EuYIp-7jAOnR6Gu-ZLPNvdTCmW95S4Ob8HzEENBvtjsWbPoNs855B_s2-g2GX--38fs7_ni7uyyuv5zcXU2u648bVsqDW1rVsao1gPoflSy6d3KozMdjEZ7UCAlwkAfEcaLfqA2lB300gxDqxt1zE723Mc0_XvCXOzD9JRoiWyl1opkQC-oar6v8mnKOeFoH1PYuvRspbCvsi3Jtv9lW5JtSTalJR2wJJsgv_eQklzMBf36w6zPY14AbfmOtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443259290</pqid></control><display><type>article</type><title>The Reinforcement Rib Performance Prediction Based on the BP Algorithm and the Finite Element Analysis</title><source>Scientific.net Journals</source><creator>Li, Xiang Sheng ; Su, Liang Yao ; Ruan, Shang Wen ; Yin, Xiong Fei ; Feng, Xiao Yan</creator><creatorcontrib>Li, Xiang Sheng ; Su, Liang Yao ; Ruan, Shang Wen ; Yin, Xiong Fei ; Feng, Xiao Yan</creatorcontrib><description>The reinforcement rib design is one of the key parts in entire bottle design. This paper presents the rib performance prediction system based on the BP algorithm and the finite element analysis, which adopts the finite element analysis results as its learning samples, sets up the rib performance prediction system with BP artificial neural network. The results show that the artificial neural network plays an important role in rib performance prediction; meanwhile it can guide the bottle design in practical terms.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3037852593</identifier><identifier>ISBN: 9783037852590</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.101-102.212</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Finite element analysis</subject><ispartof>Applied Mechanics and Materials, 2012-01, Vol.101-102, p.212-215</ispartof><rights>2012 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Sep 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/1468?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Xiang Sheng</creatorcontrib><creatorcontrib>Su, Liang Yao</creatorcontrib><creatorcontrib>Ruan, Shang Wen</creatorcontrib><creatorcontrib>Yin, Xiong Fei</creatorcontrib><creatorcontrib>Feng, Xiao Yan</creatorcontrib><title>The Reinforcement Rib Performance Prediction Based on the BP Algorithm and the Finite Element Analysis</title><title>Applied Mechanics and Materials</title><description>The reinforcement rib design is one of the key parts in entire bottle design. This paper presents the rib performance prediction system based on the BP algorithm and the finite element analysis, which adopts the finite element analysis results as its learning samples, sets up the rib performance prediction system with BP artificial neural network. The results show that the artificial neural network plays an important role in rib performance prediction; meanwhile it can guide the bottle design in practical terms.</description><subject>Finite element analysis</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3037852593</isbn><isbn>9783037852590</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkEtPGzEQgC3aSgXa_2CJW6Vd7LG9j2NCw0MCNUL0bDneWWKUeKltFPHvGQhSOXKwbM3jm_HH2C8pai2gO93tdnX2AWMJY_B1xHI6u7mppZCVFFCDhAN2KJsGqlZ38IUdKaHazoDp1de3hKh6pZrv7CjnByEaLXV3yMa7NfJbDHGcksct0fltWPElJgpsXfTIlwmH4EuYIp-7jAOnR6Gu-ZLPNvdTCmW95S4Ob8HzEENBvtjsWbPoNs855B_s2-g2GX--38fs7_ni7uyyuv5zcXU2u648bVsqDW1rVsao1gPoflSy6d3KozMdjEZ7UCAlwkAfEcaLfqA2lB300gxDqxt1zE723Mc0_XvCXOzD9JRoiWyl1opkQC-oar6v8mnKOeFoH1PYuvRspbCvsi3Jtv9lW5JtSTalJR2wJJsgv_eQklzMBf36w6zPY14AbfmOtQ</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Li, Xiang Sheng</creator><creator>Su, Liang Yao</creator><creator>Ruan, Shang Wen</creator><creator>Yin, Xiong Fei</creator><creator>Feng, Xiao Yan</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120101</creationdate><title>The Reinforcement Rib Performance Prediction Based on the BP Algorithm and the Finite Element Analysis</title><author>Li, Xiang Sheng ; Su, Liang Yao ; Ruan, Shang Wen ; Yin, Xiong Fei ; Feng, Xiao Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-42775b5537c2249f3169abcea582f54c23211e2d93305c09dc30e182915dd7463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Finite element analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiang Sheng</creatorcontrib><creatorcontrib>Su, Liang Yao</creatorcontrib><creatorcontrib>Ruan, Shang Wen</creatorcontrib><creatorcontrib>Yin, Xiong Fei</creatorcontrib><creatorcontrib>Feng, Xiao Yan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiang Sheng</au><au>Su, Liang Yao</au><au>Ruan, Shang Wen</au><au>Yin, Xiong Fei</au><au>Feng, Xiao Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Reinforcement Rib Performance Prediction Based on the BP Algorithm and the Finite Element Analysis</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>101-102</volume><spage>212</spage><epage>215</epage><pages>212-215</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3037852593</isbn><isbn>9783037852590</isbn><abstract>The reinforcement rib design is one of the key parts in entire bottle design. This paper presents the rib performance prediction system based on the BP algorithm and the finite element analysis, which adopts the finite element analysis results as its learning samples, sets up the rib performance prediction system with BP artificial neural network. The results show that the artificial neural network plays an important role in rib performance prediction; meanwhile it can guide the bottle design in practical terms.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.101-102.212</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2012-01, Vol.101-102, p.212-215
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1443259290
source Scientific.net Journals
subjects Finite element analysis
title The Reinforcement Rib Performance Prediction Based on the BP Algorithm and the Finite Element Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A07%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Reinforcement%20Rib%20Performance%20Prediction%20Based%20on%20the%20BP%20Algorithm%20and%20the%20Finite%20Element%20Analysis&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Li,%20Xiang%20Sheng&rft.date=2012-01-01&rft.volume=101-102&rft.spage=212&rft.epage=215&rft.pages=212-215&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3037852593&rft.isbn_list=9783037852590&rft_id=info:doi/10.4028/www.scientific.net/AMM.101-102.212&rft_dat=%3Cproquest_cross%3E3103687921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443259290&rft_id=info:pmid/&rfr_iscdi=true