The Application of EMD and Genetic Neural Network Algorithm to the Dynamic Weighing System for Loader

The output signal of pressure sensor installed in the dynamic weighing system for loader contains strong vibration, noise, nonlinear signal. The accuracy of the dynamic weighing system is closely related to the pressure signal. An empirical mode decomposition (EMD) algorithm is proposed to preproces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2011-10, Vol.135-136, p.1002-1006
Hauptverfasser: Liu, Qin Xian, Bao, Wei Bing, Lv, Wei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1006
container_issue
container_start_page 1002
container_title Applied Mechanics and Materials
container_volume 135-136
creator Liu, Qin Xian
Bao, Wei Bing
Lv, Wei
description The output signal of pressure sensor installed in the dynamic weighing system for loader contains strong vibration, noise, nonlinear signal. The accuracy of the dynamic weighing system is closely related to the pressure signal. An empirical mode decomposition (EMD) algorithm is proposed to preprocessing the signal contaminated. The real weighing signal is filtered out. a new method based on neural network is used to predicate the nonlinear output. in order to solve the problem that it was easily to sink into the partial minimum , the genetic algorithm was put forward .The emulation analysis and the results show that by using the above method, measure precision within 1% can be obtained.
doi_str_mv 10.4028/www.scientific.net/AMM.135-136.1002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1443240733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103244551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2202-bf6d6aa8510b15f5d4f77611b5b26613754817e40ed797181e503dfe9367be5f3</originalsourceid><addsrcrecordid>eNqVkE9vGjEQxa02lRrSfgdLPVa7-L93j4gQGgmSQ6h6tLy7YzCFNfUaIb59TYmUXHsYvcO8eU_zQ-g7JaUgrBqfTqdyaD30yTvflj2k8WS5LCmXBeWqpISwD-iWKsUKLSr2EY044bqSrCb1zb8FKWrO1Wc0GoYtIUpQUd0iWG0ATw6HnW9t8qHHweHZ8h7bvsNzyC2-xU9wjHaXJZ1C_I0nu3WIPm32OAWc8vn9ubf77PsFfr3x_Rq_nIcEe-xCxItgO4hf0CdndwN8fdU79PNhtpr-KBbP88fpZFG0jBFWNE51ytpKUtJQ6WQnnNaK0kY2TCnKtRQV1SAIdLrWtKIgCe8c1FzpBqTjd-jbNfcQw58jDMlswzH2udJQITgTRHOeXdOrq41hGCI4c4h-b-PZUGIusE2Gbd5gm4zBZNgmw86jzAV2TpldU1K0ff633bwr-4-cvzBfjyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443240733</pqid></control><display><type>article</type><title>The Application of EMD and Genetic Neural Network Algorithm to the Dynamic Weighing System for Loader</title><source>Scientific.net Journals</source><creator>Liu, Qin Xian ; Bao, Wei Bing ; Lv, Wei</creator><creatorcontrib>Liu, Qin Xian ; Bao, Wei Bing ; Lv, Wei</creatorcontrib><description>The output signal of pressure sensor installed in the dynamic weighing system for loader contains strong vibration, noise, nonlinear signal. The accuracy of the dynamic weighing system is closely related to the pressure signal. An empirical mode decomposition (EMD) algorithm is proposed to preprocessing the signal contaminated. The real weighing signal is filtered out. a new method based on neural network is used to predicate the nonlinear output. in order to solve the problem that it was easily to sink into the partial minimum , the genetic algorithm was put forward .The emulation analysis and the results show that by using the above method, measure precision within 1% can be obtained.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3037852909</identifier><identifier>ISBN: 9783037852903</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.135-136.1002</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2011-10, Vol.135-136, p.1002-1006</ispartof><rights>2012 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Oct 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2202-bf6d6aa8510b15f5d4f77611b5b26613754817e40ed797181e503dfe9367be5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/1511?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Qin Xian</creatorcontrib><creatorcontrib>Bao, Wei Bing</creatorcontrib><creatorcontrib>Lv, Wei</creatorcontrib><title>The Application of EMD and Genetic Neural Network Algorithm to the Dynamic Weighing System for Loader</title><title>Applied Mechanics and Materials</title><description>The output signal of pressure sensor installed in the dynamic weighing system for loader contains strong vibration, noise, nonlinear signal. The accuracy of the dynamic weighing system is closely related to the pressure signal. An empirical mode decomposition (EMD) algorithm is proposed to preprocessing the signal contaminated. The real weighing signal is filtered out. a new method based on neural network is used to predicate the nonlinear output. in order to solve the problem that it was easily to sink into the partial minimum , the genetic algorithm was put forward .The emulation analysis and the results show that by using the above method, measure precision within 1% can be obtained.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3037852909</isbn><isbn>9783037852903</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqVkE9vGjEQxa02lRrSfgdLPVa7-L93j4gQGgmSQ6h6tLy7YzCFNfUaIb59TYmUXHsYvcO8eU_zQ-g7JaUgrBqfTqdyaD30yTvflj2k8WS5LCmXBeWqpISwD-iWKsUKLSr2EY044bqSrCb1zb8FKWrO1Wc0GoYtIUpQUd0iWG0ATw6HnW9t8qHHweHZ8h7bvsNzyC2-xU9wjHaXJZ1C_I0nu3WIPm32OAWc8vn9ubf77PsFfr3x_Rq_nIcEe-xCxItgO4hf0CdndwN8fdU79PNhtpr-KBbP88fpZFG0jBFWNE51ytpKUtJQ6WQnnNaK0kY2TCnKtRQV1SAIdLrWtKIgCe8c1FzpBqTjd-jbNfcQw58jDMlswzH2udJQITgTRHOeXdOrq41hGCI4c4h-b-PZUGIusE2Gbd5gm4zBZNgmw86jzAV2TpldU1K0ff633bwr-4-cvzBfjyQ</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Liu, Qin Xian</creator><creator>Bao, Wei Bing</creator><creator>Lv, Wei</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20111001</creationdate><title>The Application of EMD and Genetic Neural Network Algorithm to the Dynamic Weighing System for Loader</title><author>Liu, Qin Xian ; Bao, Wei Bing ; Lv, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2202-bf6d6aa8510b15f5d4f77611b5b26613754817e40ed797181e503dfe9367be5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qin Xian</creatorcontrib><creatorcontrib>Bao, Wei Bing</creatorcontrib><creatorcontrib>Lv, Wei</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qin Xian</au><au>Bao, Wei Bing</au><au>Lv, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Application of EMD and Genetic Neural Network Algorithm to the Dynamic Weighing System for Loader</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>135-136</volume><spage>1002</spage><epage>1006</epage><pages>1002-1006</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3037852909</isbn><isbn>9783037852903</isbn><abstract>The output signal of pressure sensor installed in the dynamic weighing system for loader contains strong vibration, noise, nonlinear signal. The accuracy of the dynamic weighing system is closely related to the pressure signal. An empirical mode decomposition (EMD) algorithm is proposed to preprocessing the signal contaminated. The real weighing signal is filtered out. a new method based on neural network is used to predicate the nonlinear output. in order to solve the problem that it was easily to sink into the partial minimum , the genetic algorithm was put forward .The emulation analysis and the results show that by using the above method, measure precision within 1% can be obtained.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.135-136.1002</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2011-10, Vol.135-136, p.1002-1006
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1443240733
source Scientific.net Journals
title The Application of EMD and Genetic Neural Network Algorithm to the Dynamic Weighing System for Loader
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A02%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Application%20of%20EMD%20and%20Genetic%20Neural%20Network%20Algorithm%20to%20the%20Dynamic%20Weighing%20System%20for%20Loader&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Liu,%20Qin%20Xian&rft.date=2011-10-01&rft.volume=135-136&rft.spage=1002&rft.epage=1006&rft.pages=1002-1006&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3037852909&rft.isbn_list=9783037852903&rft_id=info:doi/10.4028/www.scientific.net/AMM.135-136.1002&rft_dat=%3Cproquest_cross%3E3103244551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443240733&rft_id=info:pmid/&rfr_iscdi=true