Hidden Defects Diagnosis Using Parameter Optimization
In this paper, the issue of composite defects diagnosis by applying the support vector machine (SVM) was addressed. The component analysis was performed initially to extract the features and to reduce the dimensionality of original data features. Kernel parameters selection of support vector machine...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2012-01, Vol.152-154, p.1691-1697 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1697 |
---|---|
container_issue | |
container_start_page | 1691 |
container_title | Applied Mechanics and Materials |
container_volume | 152-154 |
creator | Leong, W.Y. Wen, X. C. |
description | In this paper, the issue of composite defects diagnosis by applying the support vector machine (SVM) was addressed. The component analysis was performed initially to extract the features and to reduce the dimensionality of original data features. Kernel parameters selection of support vector machine which has great influence on the performance of defects classification has been discussed in this work. Precisely, we focus on wavelet transform to extract the feature from the original signals, adopt component analysis to do feature selection and apply support vector machine to classify the defects. This paper exploits the parameter optimization procedure to ensure the generalization ability of SVM. The result shows that multi-class SVM produces promising results and has the potential for use in fault diagnosis. |
doi_str_mv | 10.4028/www.scientific.net/AMM.152-154.1691 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442993773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103070351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-695ec927c45f9989af5924f0f5c9371c4f5e2cf98c59fab043b6a4d0491649343</originalsourceid><addsrcrecordid>eNqVkM1KAzEYRYM_YK19hwGXMmP-J1mWVq3QUhd2HdI0qSk2U5NI0ac3tYJuXXzcxXc5Fw4ANwg2FGJxu9_vm2S8Ddk7b5pg8-1wNmsQwzVitEFcohPQQ5zjuqUCn4KBbAWBpBWMMCzOvn-wloTwC3CZ0gZCThEVPcAmfrWyoRpbZ01O1djrdeiST9Ui-bCunnTUW5ttrOa77Lf-U2ffhStw7vRrsoOf7IPF_d3zaFJP5w-Po-G0NgSyXHPJrJG4NZQ5KYXUjklMHXTMSNIiQx2z2DgpDJNOLyElS67pClKJOJWEkj64PnJ3sXt7tymrTfceQ5lUiFIsC6UlpTU6tkzsUorWqV30Wx0_FILq4E8Vf-rXnyr-VPGnir9yVB38FcrdkZKjDilb8_Jn7B-cL2V-f-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442993773</pqid></control><display><type>article</type><title>Hidden Defects Diagnosis Using Parameter Optimization</title><source>Scientific.net Journals</source><creator>Leong, W.Y. ; Wen, X. C.</creator><creatorcontrib>Leong, W.Y. ; Wen, X. C.</creatorcontrib><description>In this paper, the issue of composite defects diagnosis by applying the support vector machine (SVM) was addressed. The component analysis was performed initially to extract the features and to reduce the dimensionality of original data features. Kernel parameters selection of support vector machine which has great influence on the performance of defects classification has been discussed in this work. Precisely, we focus on wavelet transform to extract the feature from the original signals, adopt component analysis to do feature selection and apply support vector machine to classify the defects. This paper exploits the parameter optimization procedure to ensure the generalization ability of SVM. The result shows that multi-class SVM produces promising results and has the potential for use in fault diagnosis.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783037853528</identifier><identifier>ISBN: 3037853522</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.152-154.1691</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2012-01, Vol.152-154, p.1691-1697</ispartof><rights>2012 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jan 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c305t-695ec927c45f9989af5924f0f5c9371c4f5e2cf98c59fab043b6a4d0491649343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/1620?width=600</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Leong, W.Y.</creatorcontrib><creatorcontrib>Wen, X. C.</creatorcontrib><title>Hidden Defects Diagnosis Using Parameter Optimization</title><title>Applied Mechanics and Materials</title><description>In this paper, the issue of composite defects diagnosis by applying the support vector machine (SVM) was addressed. The component analysis was performed initially to extract the features and to reduce the dimensionality of original data features. Kernel parameters selection of support vector machine which has great influence on the performance of defects classification has been discussed in this work. Precisely, we focus on wavelet transform to extract the feature from the original signals, adopt component analysis to do feature selection and apply support vector machine to classify the defects. This paper exploits the parameter optimization procedure to ensure the generalization ability of SVM. The result shows that multi-class SVM produces promising results and has the potential for use in fault diagnosis.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783037853528</isbn><isbn>3037853522</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqVkM1KAzEYRYM_YK19hwGXMmP-J1mWVq3QUhd2HdI0qSk2U5NI0ac3tYJuXXzcxXc5Fw4ANwg2FGJxu9_vm2S8Ddk7b5pg8-1wNmsQwzVitEFcohPQQ5zjuqUCn4KBbAWBpBWMMCzOvn-wloTwC3CZ0gZCThEVPcAmfrWyoRpbZ01O1djrdeiST9Ui-bCunnTUW5ttrOa77Lf-U2ffhStw7vRrsoOf7IPF_d3zaFJP5w-Po-G0NgSyXHPJrJG4NZQ5KYXUjklMHXTMSNIiQx2z2DgpDJNOLyElS67pClKJOJWEkj64PnJ3sXt7tymrTfceQ5lUiFIsC6UlpTU6tkzsUorWqV30Wx0_FILq4E8Vf-rXnyr-VPGnir9yVB38FcrdkZKjDilb8_Jn7B-cL2V-f-w</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Leong, W.Y.</creator><creator>Wen, X. C.</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20120101</creationdate><title>Hidden Defects Diagnosis Using Parameter Optimization</title><author>Leong, W.Y. ; Wen, X. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-695ec927c45f9989af5924f0f5c9371c4f5e2cf98c59fab043b6a4d0491649343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leong, W.Y.</creatorcontrib><creatorcontrib>Wen, X. C.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leong, W.Y.</au><au>Wen, X. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hidden Defects Diagnosis Using Parameter Optimization</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>152-154</volume><spage>1691</spage><epage>1697</epage><pages>1691-1697</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783037853528</isbn><isbn>3037853522</isbn><abstract>In this paper, the issue of composite defects diagnosis by applying the support vector machine (SVM) was addressed. The component analysis was performed initially to extract the features and to reduce the dimensionality of original data features. Kernel parameters selection of support vector machine which has great influence on the performance of defects classification has been discussed in this work. Precisely, we focus on wavelet transform to extract the feature from the original signals, adopt component analysis to do feature selection and apply support vector machine to classify the defects. This paper exploits the parameter optimization procedure to ensure the generalization ability of SVM. The result shows that multi-class SVM produces promising results and has the potential for use in fault diagnosis.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.152-154.1691</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2012-01, Vol.152-154, p.1691-1697 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_journals_1442993773 |
source | Scientific.net Journals |
title | Hidden Defects Diagnosis Using Parameter Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A03%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hidden%20Defects%20Diagnosis%20Using%20Parameter%20Optimization&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Leong,%20W.Y.&rft.date=2012-01-01&rft.volume=152-154&rft.spage=1691&rft.epage=1697&rft.pages=1691-1697&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783037853528&rft.isbn_list=3037853522&rft_id=info:doi/10.4028/www.scientific.net/AMM.152-154.1691&rft_dat=%3Cproquest_cross%3E3103070351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442993773&rft_id=info:pmid/&rfr_iscdi=true |