Hidden Defects Diagnosis Using Parameter Optimization

In this paper, the issue of composite defects diagnosis by applying the support vector machine (SVM) was addressed. The component analysis was performed initially to extract the features and to reduce the dimensionality of original data features. Kernel parameters selection of support vector machine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2012-01, Vol.152-154, p.1691-1697
Hauptverfasser: Leong, W.Y., Wen, X. C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1697
container_issue
container_start_page 1691
container_title Applied Mechanics and Materials
container_volume 152-154
creator Leong, W.Y.
Wen, X. C.
description In this paper, the issue of composite defects diagnosis by applying the support vector machine (SVM) was addressed. The component analysis was performed initially to extract the features and to reduce the dimensionality of original data features. Kernel parameters selection of support vector machine which has great influence on the performance of defects classification has been discussed in this work. Precisely, we focus on wavelet transform to extract the feature from the original signals, adopt component analysis to do feature selection and apply support vector machine to classify the defects. This paper exploits the parameter optimization procedure to ensure the generalization ability of SVM. The result shows that multi-class SVM produces promising results and has the potential for use in fault diagnosis.
doi_str_mv 10.4028/www.scientific.net/AMM.152-154.1691
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442993773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103070351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-695ec927c45f9989af5924f0f5c9371c4f5e2cf98c59fab043b6a4d0491649343</originalsourceid><addsrcrecordid>eNqVkM1KAzEYRYM_YK19hwGXMmP-J1mWVq3QUhd2HdI0qSk2U5NI0ac3tYJuXXzcxXc5Fw4ANwg2FGJxu9_vm2S8Ddk7b5pg8-1wNmsQwzVitEFcohPQQ5zjuqUCn4KBbAWBpBWMMCzOvn-wloTwC3CZ0gZCThEVPcAmfrWyoRpbZ01O1djrdeiST9Ui-bCunnTUW5ttrOa77Lf-U2ffhStw7vRrsoOf7IPF_d3zaFJP5w-Po-G0NgSyXHPJrJG4NZQ5KYXUjklMHXTMSNIiQx2z2DgpDJNOLyElS67pClKJOJWEkj64PnJ3sXt7tymrTfceQ5lUiFIsC6UlpTU6tkzsUorWqV30Wx0_FILq4E8Vf-rXnyr-VPGnir9yVB38FcrdkZKjDilb8_Jn7B-cL2V-f-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442993773</pqid></control><display><type>article</type><title>Hidden Defects Diagnosis Using Parameter Optimization</title><source>Scientific.net Journals</source><creator>Leong, W.Y. ; Wen, X. C.</creator><creatorcontrib>Leong, W.Y. ; Wen, X. C.</creatorcontrib><description>In this paper, the issue of composite defects diagnosis by applying the support vector machine (SVM) was addressed. The component analysis was performed initially to extract the features and to reduce the dimensionality of original data features. Kernel parameters selection of support vector machine which has great influence on the performance of defects classification has been discussed in this work. Precisely, we focus on wavelet transform to extract the feature from the original signals, adopt component analysis to do feature selection and apply support vector machine to classify the defects. This paper exploits the parameter optimization procedure to ensure the generalization ability of SVM. The result shows that multi-class SVM produces promising results and has the potential for use in fault diagnosis.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783037853528</identifier><identifier>ISBN: 3037853522</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.152-154.1691</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2012-01, Vol.152-154, p.1691-1697</ispartof><rights>2012 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jan 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c305t-695ec927c45f9989af5924f0f5c9371c4f5e2cf98c59fab043b6a4d0491649343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/1620?width=600</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Leong, W.Y.</creatorcontrib><creatorcontrib>Wen, X. C.</creatorcontrib><title>Hidden Defects Diagnosis Using Parameter Optimization</title><title>Applied Mechanics and Materials</title><description>In this paper, the issue of composite defects diagnosis by applying the support vector machine (SVM) was addressed. The component analysis was performed initially to extract the features and to reduce the dimensionality of original data features. Kernel parameters selection of support vector machine which has great influence on the performance of defects classification has been discussed in this work. Precisely, we focus on wavelet transform to extract the feature from the original signals, adopt component analysis to do feature selection and apply support vector machine to classify the defects. This paper exploits the parameter optimization procedure to ensure the generalization ability of SVM. The result shows that multi-class SVM produces promising results and has the potential for use in fault diagnosis.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783037853528</isbn><isbn>3037853522</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqVkM1KAzEYRYM_YK19hwGXMmP-J1mWVq3QUhd2HdI0qSk2U5NI0ac3tYJuXXzcxXc5Fw4ANwg2FGJxu9_vm2S8Ddk7b5pg8-1wNmsQwzVitEFcohPQQ5zjuqUCn4KBbAWBpBWMMCzOvn-wloTwC3CZ0gZCThEVPcAmfrWyoRpbZ01O1djrdeiST9Ui-bCunnTUW5ttrOa77Lf-U2ffhStw7vRrsoOf7IPF_d3zaFJP5w-Po-G0NgSyXHPJrJG4NZQ5KYXUjklMHXTMSNIiQx2z2DgpDJNOLyElS67pClKJOJWEkj64PnJ3sXt7tymrTfceQ5lUiFIsC6UlpTU6tkzsUorWqV30Wx0_FILq4E8Vf-rXnyr-VPGnir9yVB38FcrdkZKjDilb8_Jn7B-cL2V-f-w</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Leong, W.Y.</creator><creator>Wen, X. C.</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20120101</creationdate><title>Hidden Defects Diagnosis Using Parameter Optimization</title><author>Leong, W.Y. ; Wen, X. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-695ec927c45f9989af5924f0f5c9371c4f5e2cf98c59fab043b6a4d0491649343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leong, W.Y.</creatorcontrib><creatorcontrib>Wen, X. C.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leong, W.Y.</au><au>Wen, X. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hidden Defects Diagnosis Using Parameter Optimization</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>152-154</volume><spage>1691</spage><epage>1697</epage><pages>1691-1697</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783037853528</isbn><isbn>3037853522</isbn><abstract>In this paper, the issue of composite defects diagnosis by applying the support vector machine (SVM) was addressed. The component analysis was performed initially to extract the features and to reduce the dimensionality of original data features. Kernel parameters selection of support vector machine which has great influence on the performance of defects classification has been discussed in this work. Precisely, we focus on wavelet transform to extract the feature from the original signals, adopt component analysis to do feature selection and apply support vector machine to classify the defects. This paper exploits the parameter optimization procedure to ensure the generalization ability of SVM. The result shows that multi-class SVM produces promising results and has the potential for use in fault diagnosis.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.152-154.1691</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2012-01, Vol.152-154, p.1691-1697
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1442993773
source Scientific.net Journals
title Hidden Defects Diagnosis Using Parameter Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A03%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hidden%20Defects%20Diagnosis%20Using%20Parameter%20Optimization&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Leong,%20W.Y.&rft.date=2012-01-01&rft.volume=152-154&rft.spage=1691&rft.epage=1697&rft.pages=1691-1697&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783037853528&rft.isbn_list=3037853522&rft_id=info:doi/10.4028/www.scientific.net/AMM.152-154.1691&rft_dat=%3Cproquest_cross%3E3103070351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442993773&rft_id=info:pmid/&rfr_iscdi=true