Numerical Simulation of Flow Field of Cavitating Water Jet in Angel Nozzle

Physical model of angle nozzle was established. Based on the CFD software of FLUENT, the flow field about cavitating water jet in angle nozzle was simulated by use of mixture model, Singhal complete cavitation model, RNG turbulent model and SIMPLEC algorithm. The simulation results show that there a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2012-10, Vol.203, p.438-442
Hauptverfasser: Guan, Jin Fa, Hua, Wei Xing, Deng, Song Sheng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 442
container_issue
container_start_page 438
container_title Applied Mechanics and Materials
container_volume 203
creator Guan, Jin Fa
Hua, Wei Xing
Deng, Song Sheng
description Physical model of angle nozzle was established. Based on the CFD software of FLUENT, the flow field about cavitating water jet in angle nozzle was simulated by use of mixture model, Singhal complete cavitation model, RNG turbulent model and SIMPLEC algorithm. The simulation results show that there are two low pressure regions and two regions of high volume fraction of steam in angle nozzle. The region of high volume fraction of steam corresponds with low pressure region. The region of high volume fraction of steam mainly lies near the exit of column section and approximates to a semicircle. In this region, the volume fraction of steam reaches the maximum value at a point of on-wall. Taking that point as the centre, the volume fraction of steam decreases gradually from interior to exterior.
doi_str_mv 10.4028/www.scientific.net/AMM.203.438
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442953959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102809741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2108-306abc6916eb9055764fa13d2c3f96312da796f7e0b14af5e542e33bbd33efc73</originalsourceid><addsrcrecordid>eNqNkEtLAzEUhYMPsD7-Q0BwN2Nek5lsxFKsWqwuVFyGTHqjKdOZmkkt-uuNVtClq8vlHL4DH0InlOSCsOp0vV7nvfXQRu-8zVuIp8PpNGeE54JXW2hApWRZKSq2jY5UWXHCy6oQitGd74xkinO5h_b7fk6IFFRUAzS5XS0geGsafO8Xq8ZE37W4c3jcdGs89tDMvr6RefMxZe0zfjIRAp5AxL7Fw_YZGnzbfXw0cIh2nWl6OPq5B-hxfPEwuspu7i6vR8ObzDJKqowTaWorFZVQK1IUpRTOUD5jljslOWUzUyrpSiA1FcYVUAgGnNf1jHNwtuQH6HjDXYbudQV91PNuFdo0qakQTBVcFSq1zjYtG7q-D-D0MviFCe-aEv3lUyef-tenTj518qmTT518JsD5BhCDafsI9uXPzv8Qn-TOg6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442953959</pqid></control><display><type>article</type><title>Numerical Simulation of Flow Field of Cavitating Water Jet in Angel Nozzle</title><source>Scientific.net Journals</source><creator>Guan, Jin Fa ; Hua, Wei Xing ; Deng, Song Sheng</creator><creatorcontrib>Guan, Jin Fa ; Hua, Wei Xing ; Deng, Song Sheng</creatorcontrib><description>Physical model of angle nozzle was established. Based on the CFD software of FLUENT, the flow field about cavitating water jet in angle nozzle was simulated by use of mixture model, Singhal complete cavitation model, RNG turbulent model and SIMPLEC algorithm. The simulation results show that there are two low pressure regions and two regions of high volume fraction of steam in angle nozzle. The region of high volume fraction of steam corresponds with low pressure region. The region of high volume fraction of steam mainly lies near the exit of column section and approximates to a semicircle. In this region, the volume fraction of steam reaches the maximum value at a point of on-wall. Taking that point as the centre, the volume fraction of steam decreases gradually from interior to exterior.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783037854921</identifier><identifier>ISBN: 3037854928</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.203.438</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2012-10, Vol.203, p.438-442</ispartof><rights>2012 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Oct 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2108-306abc6916eb9055764fa13d2c3f96312da796f7e0b14af5e542e33bbd33efc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/1999?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Guan, Jin Fa</creatorcontrib><creatorcontrib>Hua, Wei Xing</creatorcontrib><creatorcontrib>Deng, Song Sheng</creatorcontrib><title>Numerical Simulation of Flow Field of Cavitating Water Jet in Angel Nozzle</title><title>Applied Mechanics and Materials</title><description>Physical model of angle nozzle was established. Based on the CFD software of FLUENT, the flow field about cavitating water jet in angle nozzle was simulated by use of mixture model, Singhal complete cavitation model, RNG turbulent model and SIMPLEC algorithm. The simulation results show that there are two low pressure regions and two regions of high volume fraction of steam in angle nozzle. The region of high volume fraction of steam corresponds with low pressure region. The region of high volume fraction of steam mainly lies near the exit of column section and approximates to a semicircle. In this region, the volume fraction of steam reaches the maximum value at a point of on-wall. Taking that point as the centre, the volume fraction of steam decreases gradually from interior to exterior.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783037854921</isbn><isbn>3037854928</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkEtLAzEUhYMPsD7-Q0BwN2Nek5lsxFKsWqwuVFyGTHqjKdOZmkkt-uuNVtClq8vlHL4DH0InlOSCsOp0vV7nvfXQRu-8zVuIp8PpNGeE54JXW2hApWRZKSq2jY5UWXHCy6oQitGd74xkinO5h_b7fk6IFFRUAzS5XS0geGsafO8Xq8ZE37W4c3jcdGs89tDMvr6RefMxZe0zfjIRAp5AxL7Fw_YZGnzbfXw0cIh2nWl6OPq5B-hxfPEwuspu7i6vR8ObzDJKqowTaWorFZVQK1IUpRTOUD5jljslOWUzUyrpSiA1FcYVUAgGnNf1jHNwtuQH6HjDXYbudQV91PNuFdo0qakQTBVcFSq1zjYtG7q-D-D0MviFCe-aEv3lUyef-tenTj518qmTT518JsD5BhCDafsI9uXPzv8Qn-TOg6g</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Guan, Jin Fa</creator><creator>Hua, Wei Xing</creator><creator>Deng, Song Sheng</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20121001</creationdate><title>Numerical Simulation of Flow Field of Cavitating Water Jet in Angel Nozzle</title><author>Guan, Jin Fa ; Hua, Wei Xing ; Deng, Song Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2108-306abc6916eb9055764fa13d2c3f96312da796f7e0b14af5e542e33bbd33efc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Jin Fa</creatorcontrib><creatorcontrib>Hua, Wei Xing</creatorcontrib><creatorcontrib>Deng, Song Sheng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Jin Fa</au><au>Hua, Wei Xing</au><au>Deng, Song Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Flow Field of Cavitating Water Jet in Angel Nozzle</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2012-10-01</date><risdate>2012</risdate><volume>203</volume><spage>438</spage><epage>442</epage><pages>438-442</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783037854921</isbn><isbn>3037854928</isbn><abstract>Physical model of angle nozzle was established. Based on the CFD software of FLUENT, the flow field about cavitating water jet in angle nozzle was simulated by use of mixture model, Singhal complete cavitation model, RNG turbulent model and SIMPLEC algorithm. The simulation results show that there are two low pressure regions and two regions of high volume fraction of steam in angle nozzle. The region of high volume fraction of steam corresponds with low pressure region. The region of high volume fraction of steam mainly lies near the exit of column section and approximates to a semicircle. In this region, the volume fraction of steam reaches the maximum value at a point of on-wall. Taking that point as the centre, the volume fraction of steam decreases gradually from interior to exterior.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.203.438</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2012-10, Vol.203, p.438-442
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1442953959
source Scientific.net Journals
title Numerical Simulation of Flow Field of Cavitating Water Jet in Angel Nozzle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A42%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Flow%20Field%20of%20Cavitating%20Water%20Jet%20in%20Angel%20Nozzle&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Guan,%20Jin%20Fa&rft.date=2012-10-01&rft.volume=203&rft.spage=438&rft.epage=442&rft.pages=438-442&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783037854921&rft.isbn_list=3037854928&rft_id=info:doi/10.4028/www.scientific.net/AMM.203.438&rft_dat=%3Cproquest_cross%3E3102809741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442953959&rft_id=info:pmid/&rfr_iscdi=true