Numerical Simulation of Flow Field of Cavitating Water Jet in Angel Nozzle
Physical model of angle nozzle was established. Based on the CFD software of FLUENT, the flow field about cavitating water jet in angle nozzle was simulated by use of mixture model, Singhal complete cavitation model, RNG turbulent model and SIMPLEC algorithm. The simulation results show that there a...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2012-10, Vol.203, p.438-442 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 442 |
---|---|
container_issue | |
container_start_page | 438 |
container_title | Applied Mechanics and Materials |
container_volume | 203 |
creator | Guan, Jin Fa Hua, Wei Xing Deng, Song Sheng |
description | Physical model of angle nozzle was established. Based on the CFD software of FLUENT, the flow field about cavitating water jet in angle nozzle was simulated by use of mixture model, Singhal complete cavitation model, RNG turbulent model and SIMPLEC algorithm. The simulation results show that there are two low pressure regions and two regions of high volume fraction of steam in angle nozzle. The region of high volume fraction of steam corresponds with low pressure region. The region of high volume fraction of steam mainly lies near the exit of column section and approximates to a semicircle. In this region, the volume fraction of steam reaches the maximum value at a point of on-wall. Taking that point as the centre, the volume fraction of steam decreases gradually from interior to exterior. |
doi_str_mv | 10.4028/www.scientific.net/AMM.203.438 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442953959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102809741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2108-306abc6916eb9055764fa13d2c3f96312da796f7e0b14af5e542e33bbd33efc73</originalsourceid><addsrcrecordid>eNqNkEtLAzEUhYMPsD7-Q0BwN2Nek5lsxFKsWqwuVFyGTHqjKdOZmkkt-uuNVtClq8vlHL4DH0InlOSCsOp0vV7nvfXQRu-8zVuIp8PpNGeE54JXW2hApWRZKSq2jY5UWXHCy6oQitGd74xkinO5h_b7fk6IFFRUAzS5XS0geGsafO8Xq8ZE37W4c3jcdGs89tDMvr6RefMxZe0zfjIRAp5AxL7Fw_YZGnzbfXw0cIh2nWl6OPq5B-hxfPEwuspu7i6vR8ObzDJKqowTaWorFZVQK1IUpRTOUD5jljslOWUzUyrpSiA1FcYVUAgGnNf1jHNwtuQH6HjDXYbudQV91PNuFdo0qakQTBVcFSq1zjYtG7q-D-D0MviFCe-aEv3lUyef-tenTj518qmTT518JsD5BhCDafsI9uXPzv8Qn-TOg6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442953959</pqid></control><display><type>article</type><title>Numerical Simulation of Flow Field of Cavitating Water Jet in Angel Nozzle</title><source>Scientific.net Journals</source><creator>Guan, Jin Fa ; Hua, Wei Xing ; Deng, Song Sheng</creator><creatorcontrib>Guan, Jin Fa ; Hua, Wei Xing ; Deng, Song Sheng</creatorcontrib><description>Physical model of angle nozzle was established. Based on the CFD software of FLUENT, the flow field about cavitating water jet in angle nozzle was simulated by use of mixture model, Singhal complete cavitation model, RNG turbulent model and SIMPLEC algorithm. The simulation results show that there are two low pressure regions and two regions of high volume fraction of steam in angle nozzle. The region of high volume fraction of steam corresponds with low pressure region. The region of high volume fraction of steam mainly lies near the exit of column section and approximates to a semicircle. In this region, the volume fraction of steam reaches the maximum value at a point of on-wall. Taking that point as the centre, the volume fraction of steam decreases gradually from interior to exterior.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783037854921</identifier><identifier>ISBN: 3037854928</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.203.438</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2012-10, Vol.203, p.438-442</ispartof><rights>2012 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Oct 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2108-306abc6916eb9055764fa13d2c3f96312da796f7e0b14af5e542e33bbd33efc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/1999?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Guan, Jin Fa</creatorcontrib><creatorcontrib>Hua, Wei Xing</creatorcontrib><creatorcontrib>Deng, Song Sheng</creatorcontrib><title>Numerical Simulation of Flow Field of Cavitating Water Jet in Angel Nozzle</title><title>Applied Mechanics and Materials</title><description>Physical model of angle nozzle was established. Based on the CFD software of FLUENT, the flow field about cavitating water jet in angle nozzle was simulated by use of mixture model, Singhal complete cavitation model, RNG turbulent model and SIMPLEC algorithm. The simulation results show that there are two low pressure regions and two regions of high volume fraction of steam in angle nozzle. The region of high volume fraction of steam corresponds with low pressure region. The region of high volume fraction of steam mainly lies near the exit of column section and approximates to a semicircle. In this region, the volume fraction of steam reaches the maximum value at a point of on-wall. Taking that point as the centre, the volume fraction of steam decreases gradually from interior to exterior.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783037854921</isbn><isbn>3037854928</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkEtLAzEUhYMPsD7-Q0BwN2Nek5lsxFKsWqwuVFyGTHqjKdOZmkkt-uuNVtClq8vlHL4DH0InlOSCsOp0vV7nvfXQRu-8zVuIp8PpNGeE54JXW2hApWRZKSq2jY5UWXHCy6oQitGd74xkinO5h_b7fk6IFFRUAzS5XS0geGsafO8Xq8ZE37W4c3jcdGs89tDMvr6RefMxZe0zfjIRAp5AxL7Fw_YZGnzbfXw0cIh2nWl6OPq5B-hxfPEwuspu7i6vR8ObzDJKqowTaWorFZVQK1IUpRTOUD5jljslOWUzUyrpSiA1FcYVUAgGnNf1jHNwtuQH6HjDXYbudQV91PNuFdo0qakQTBVcFSq1zjYtG7q-D-D0MviFCe-aEv3lUyef-tenTj518qmTT518JsD5BhCDafsI9uXPzv8Qn-TOg6g</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Guan, Jin Fa</creator><creator>Hua, Wei Xing</creator><creator>Deng, Song Sheng</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20121001</creationdate><title>Numerical Simulation of Flow Field of Cavitating Water Jet in Angel Nozzle</title><author>Guan, Jin Fa ; Hua, Wei Xing ; Deng, Song Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2108-306abc6916eb9055764fa13d2c3f96312da796f7e0b14af5e542e33bbd33efc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Jin Fa</creatorcontrib><creatorcontrib>Hua, Wei Xing</creatorcontrib><creatorcontrib>Deng, Song Sheng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Jin Fa</au><au>Hua, Wei Xing</au><au>Deng, Song Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Flow Field of Cavitating Water Jet in Angel Nozzle</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2012-10-01</date><risdate>2012</risdate><volume>203</volume><spage>438</spage><epage>442</epage><pages>438-442</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783037854921</isbn><isbn>3037854928</isbn><abstract>Physical model of angle nozzle was established. Based on the CFD software of FLUENT, the flow field about cavitating water jet in angle nozzle was simulated by use of mixture model, Singhal complete cavitation model, RNG turbulent model and SIMPLEC algorithm. The simulation results show that there are two low pressure regions and two regions of high volume fraction of steam in angle nozzle. The region of high volume fraction of steam corresponds with low pressure region. The region of high volume fraction of steam mainly lies near the exit of column section and approximates to a semicircle. In this region, the volume fraction of steam reaches the maximum value at a point of on-wall. Taking that point as the centre, the volume fraction of steam decreases gradually from interior to exterior.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.203.438</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2012-10, Vol.203, p.438-442 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_journals_1442953959 |
source | Scientific.net Journals |
title | Numerical Simulation of Flow Field of Cavitating Water Jet in Angel Nozzle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A42%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Flow%20Field%20of%20Cavitating%20Water%20Jet%20in%20Angel%20Nozzle&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Guan,%20Jin%20Fa&rft.date=2012-10-01&rft.volume=203&rft.spage=438&rft.epage=442&rft.pages=438-442&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783037854921&rft.isbn_list=3037854928&rft_id=info:doi/10.4028/www.scientific.net/AMM.203.438&rft_dat=%3Cproquest_cross%3E3102809741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442953959&rft_id=info:pmid/&rfr_iscdi=true |