Time-Frequency Analysis of Frequency Hopping Signals Based on Particle Swarm Optimization
A new method is proposed for blind parameter estimation of frequency hopping signals. According to the relation between peaks location on the time frequency plane and component centers of frequency hopping signals, parameter estimation problem is solved using multi-species particle swarm optimizatio...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2012-08, Vol.195-196, p.265-269 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 269 |
---|---|
container_issue | |
container_start_page | 265 |
container_title | Applied Mechanics and Materials |
container_volume | 195-196 |
creator | Guo, Jian Tao |
description | A new method is proposed for blind parameter estimation of frequency hopping signals. According to the relation between peaks location on the time frequency plane and component centers of frequency hopping signals, parameter estimation problem is solved using multi-species particle swarm optimization algorithm. Each particle moves around the time and frequency plane and will converge to different species, which species seed represents the center of frequency hopping component. Using this method, the parameters of frequency hopping signals can be estimated. Simulation results demonstrate that the method is effective and feasible. |
doi_str_mv | 10.4028/www.scientific.net/AMM.195-196.265 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442911905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102703751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-53f8a774a4cf0aa3f247775fb7ce47dd5d9b50d3914b6dbe26a29f3d4407717d3</originalsourceid><addsrcrecordid>eNqNkEtLAzEUhYMP0Fb_Q8CdMGMyySSTZX3UCkoFdeEqpJmkpnQeJiml_npTK9Sli8uFew7nHj4ALjHKKSqqq_V6nQftTBuddTpvTbwaPT3lWJQZFiwvWHkATjFjRcZpVRyCAUGEVyVlghz9CCgThLATMAhhgRCjmFan4P3VNSYbe_O5Mq3ewFGrlpvgAuws3F8nXd-7dg5f3DzpAV6rYGrYtfBZ-ej00sCXtfINnPbRNe5LRde1Z-DYJq85_91D8Da-e72ZZI_T-4eb0WOmCatiVhJbKc6potoipYgtKOe8tDOuDeV1XdZiVqKaCExnrJ6ZgqlCWFJTijjHvCZDcLHL7X2X6oYoF93Kb2tKTGkhMBaoTK7rnUv7LgRvrOy9a5TfSIzklq9MfOWer0x8ZeIrE980TCa-KeR2FxK9akM0-uPPr__HfAP0zoyx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442911905</pqid></control><display><type>article</type><title>Time-Frequency Analysis of Frequency Hopping Signals Based on Particle Swarm Optimization</title><source>Scientific.net Journals</source><creator>Guo, Jian Tao</creator><creatorcontrib>Guo, Jian Tao</creatorcontrib><description>A new method is proposed for blind parameter estimation of frequency hopping signals. According to the relation between peaks location on the time frequency plane and component centers of frequency hopping signals, parameter estimation problem is solved using multi-species particle swarm optimization algorithm. Each particle moves around the time and frequency plane and will converge to different species, which species seed represents the center of frequency hopping component. Using this method, the parameters of frequency hopping signals can be estimated. Simulation results demonstrate that the method is effective and feasible.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3037854693</identifier><identifier>ISBN: 9783037854693</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.195-196.265</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2012-08, Vol.195-196, p.265-269</ispartof><rights>2012 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Aug 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-53f8a774a4cf0aa3f247775fb7ce47dd5d9b50d3914b6dbe26a29f3d4407717d3</citedby><cites>FETCH-LOGICAL-c368t-53f8a774a4cf0aa3f247775fb7ce47dd5d9b50d3914b6dbe26a29f3d4407717d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/1935?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Guo, Jian Tao</creatorcontrib><title>Time-Frequency Analysis of Frequency Hopping Signals Based on Particle Swarm Optimization</title><title>Applied Mechanics and Materials</title><description>A new method is proposed for blind parameter estimation of frequency hopping signals. According to the relation between peaks location on the time frequency plane and component centers of frequency hopping signals, parameter estimation problem is solved using multi-species particle swarm optimization algorithm. Each particle moves around the time and frequency plane and will converge to different species, which species seed represents the center of frequency hopping component. Using this method, the parameters of frequency hopping signals can be estimated. Simulation results demonstrate that the method is effective and feasible.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3037854693</isbn><isbn>9783037854693</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkEtLAzEUhYMP0Fb_Q8CdMGMyySSTZX3UCkoFdeEqpJmkpnQeJiml_npTK9Sli8uFew7nHj4ALjHKKSqqq_V6nQftTBuddTpvTbwaPT3lWJQZFiwvWHkATjFjRcZpVRyCAUGEVyVlghz9CCgThLATMAhhgRCjmFan4P3VNSYbe_O5Mq3ewFGrlpvgAuws3F8nXd-7dg5f3DzpAV6rYGrYtfBZ-ej00sCXtfINnPbRNe5LRde1Z-DYJq85_91D8Da-e72ZZI_T-4eb0WOmCatiVhJbKc6potoipYgtKOe8tDOuDeV1XdZiVqKaCExnrJ6ZgqlCWFJTijjHvCZDcLHL7X2X6oYoF93Kb2tKTGkhMBaoTK7rnUv7LgRvrOy9a5TfSIzklq9MfOWer0x8ZeIrE980TCa-KeR2FxK9akM0-uPPr__HfAP0zoyx</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Guo, Jian Tao</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120801</creationdate><title>Time-Frequency Analysis of Frequency Hopping Signals Based on Particle Swarm Optimization</title><author>Guo, Jian Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-53f8a774a4cf0aa3f247775fb7ce47dd5d9b50d3914b6dbe26a29f3d4407717d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jian Tao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Jian Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-Frequency Analysis of Frequency Hopping Signals Based on Particle Swarm Optimization</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2012-08-01</date><risdate>2012</risdate><volume>195-196</volume><spage>265</spage><epage>269</epage><pages>265-269</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3037854693</isbn><isbn>9783037854693</isbn><abstract>A new method is proposed for blind parameter estimation of frequency hopping signals. According to the relation between peaks location on the time frequency plane and component centers of frequency hopping signals, parameter estimation problem is solved using multi-species particle swarm optimization algorithm. Each particle moves around the time and frequency plane and will converge to different species, which species seed represents the center of frequency hopping component. Using this method, the parameters of frequency hopping signals can be estimated. Simulation results demonstrate that the method is effective and feasible.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.195-196.265</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2012-08, Vol.195-196, p.265-269 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_journals_1442911905 |
source | Scientific.net Journals |
title | Time-Frequency Analysis of Frequency Hopping Signals Based on Particle Swarm Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A01%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-Frequency%20Analysis%20of%20Frequency%20Hopping%20Signals%20Based%20on%20Particle%20Swarm%20Optimization&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Guo,%20Jian%20Tao&rft.date=2012-08-01&rft.volume=195-196&rft.spage=265&rft.epage=269&rft.pages=265-269&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3037854693&rft.isbn_list=9783037854693&rft_id=info:doi/10.4028/www.scientific.net/AMM.195-196.265&rft_dat=%3Cproquest_cross%3E3102703751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442911905&rft_id=info:pmid/&rfr_iscdi=true |