The Calibration on Nonlinear Single Return Period Storm Intensity Model Parameters by the New Blending Accelerating Genetic Algorithm

Through improving the real-coded genetic algorithms and embedding the algorithm of accelerating the local search in the Powell direction and the operation of accelerating cycle, thereby it is constructed the New blend Accelerating Genetic Algorithm (hereinafter referred to as NBAGA). The applied exa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2012-10, Vol.204-208, p.3480-3487
Hauptverfasser: Zhou, Hong Tao, Lu, Jing Cheng, Ren, Bo Zhi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Through improving the real-coded genetic algorithms and embedding the algorithm of accelerating the local search in the Powell direction and the operation of accelerating cycle, thereby it is constructed the New blend Accelerating Genetic Algorithm (hereinafter referred to as NBAGA). The applied examples of the calibration on nonlinear single return period storm intensity model parameters show that this method takes into account of the advantages of both the advantages of the improved real-coded genetic algorithms and the Powell Algorithm, therefore this method is an excellent nonlinear optimization method which can search the global optimal exact solutions quickly and in greater probability, as well as doing subtle search locally.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.204-208.3480