Structural Damage Detection Based on Curvature Mode Shapes and Neural Network Technique

On the basis of the theory that natural frequency changes and curvature mode shapes can be employed to determine the locations and degrees of damage of structures, a BP neural network technique with an improved input structure was developed. The two networks were used for diagnosis of structural dam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2012-10, Vol.204-208, p.2907-2912
Hauptverfasser: Zhu, Chang Zhi, Long, Li Juan, Du, Guang Qian, Zhang, Meng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2912
container_issue
container_start_page 2907
container_title Applied Mechanics and Materials
container_volume 204-208
creator Zhu, Chang Zhi
Long, Li Juan
Du, Guang Qian
Zhang, Meng
description On the basis of the theory that natural frequency changes and curvature mode shapes can be employed to determine the locations and degrees of damage of structures, a BP neural network technique with an improved input structure was developed. The two networks were used for diagnosis of structural damage, and structural damages were predicted using gray theory. The results showed that the gray theory to predict the structural damage neural network was applicable to irregular objects such injury problem diagnosis.
doi_str_mv 10.4028/www.scientific.net/AMM.204-208.2907
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442862635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102522701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-81b46366c122b7537f6e10f011791a1b5fd58978e6e2ead5abb8daad3c872dd83</originalsourceid><addsrcrecordid>eNqVkMlOwzAURS0GifEfLLFEST3FdpdQyiDRsgDE0nLsFxqGpNgOFX-PoUiwZWE9S---c6WD0DElpSBMj1arVRldC11qm9aVHaTRyWxWMiIKRnTJxkRtoF0qJSuU0GwT7XHCla6EFmrre0GKMedyB-3F-ESIFFToXfRwm8Lg0hDsCz6zr_YR8BkkcKntO3xqI3icP5MhvNscAjzrPeDbhV1CxLbzeA7fp3NIqz484ztwi659G-AAbTf2JcLhz9xH9-fTu8llcX1zcTU5uS4cJ1UqNK2F5FI6ylitKq4aCZQ0hFI1ppbWVeMrPVYaJDCwvrJ1rb21njutmPea76OjNXcZ-lwbk3nqh9DlSkOFYFoyyaucmqxTLvQxBmjMMrSvNnwYSsyXXpP1ml-9Jus1Wa_JevPT5ktvpkzXlBRsF7OkxZ-yf3A-AWtXi_4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442862635</pqid></control><display><type>article</type><title>Structural Damage Detection Based on Curvature Mode Shapes and Neural Network Technique</title><source>Scientific.net Journals</source><creator>Zhu, Chang Zhi ; Long, Li Juan ; Du, Guang Qian ; Zhang, Meng</creator><creatorcontrib>Zhu, Chang Zhi ; Long, Li Juan ; Du, Guang Qian ; Zhang, Meng</creatorcontrib><description>On the basis of the theory that natural frequency changes and curvature mode shapes can be employed to determine the locations and degrees of damage of structures, a BP neural network technique with an improved input structure was developed. The two networks were used for diagnosis of structural damage, and structural damages were predicted using gray theory. The results showed that the gray theory to predict the structural damage neural network was applicable to irregular objects such injury problem diagnosis.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3037854847</identifier><identifier>ISBN: 9783037854846</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.204-208.2907</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2012-10, Vol.204-208, p.2907-2912</ispartof><rights>2012 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Oct 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/1975?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhu, Chang Zhi</creatorcontrib><creatorcontrib>Long, Li Juan</creatorcontrib><creatorcontrib>Du, Guang Qian</creatorcontrib><creatorcontrib>Zhang, Meng</creatorcontrib><title>Structural Damage Detection Based on Curvature Mode Shapes and Neural Network Technique</title><title>Applied Mechanics and Materials</title><description>On the basis of the theory that natural frequency changes and curvature mode shapes can be employed to determine the locations and degrees of damage of structures, a BP neural network technique with an improved input structure was developed. The two networks were used for diagnosis of structural damage, and structural damages were predicted using gray theory. The results showed that the gray theory to predict the structural damage neural network was applicable to irregular objects such injury problem diagnosis.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3037854847</isbn><isbn>9783037854846</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqVkMlOwzAURS0GifEfLLFEST3FdpdQyiDRsgDE0nLsFxqGpNgOFX-PoUiwZWE9S---c6WD0DElpSBMj1arVRldC11qm9aVHaTRyWxWMiIKRnTJxkRtoF0qJSuU0GwT7XHCla6EFmrre0GKMedyB-3F-ESIFFToXfRwm8Lg0hDsCz6zr_YR8BkkcKntO3xqI3icP5MhvNscAjzrPeDbhV1CxLbzeA7fp3NIqz484ztwi659G-AAbTf2JcLhz9xH9-fTu8llcX1zcTU5uS4cJ1UqNK2F5FI6ylitKq4aCZQ0hFI1ppbWVeMrPVYaJDCwvrJ1rb21njutmPea76OjNXcZ-lwbk3nqh9DlSkOFYFoyyaucmqxTLvQxBmjMMrSvNnwYSsyXXpP1ml-9Jus1Wa_JevPT5ktvpkzXlBRsF7OkxZ-yf3A-AWtXi_4</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Zhu, Chang Zhi</creator><creator>Long, Li Juan</creator><creator>Du, Guang Qian</creator><creator>Zhang, Meng</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20121001</creationdate><title>Structural Damage Detection Based on Curvature Mode Shapes and Neural Network Technique</title><author>Zhu, Chang Zhi ; Long, Li Juan ; Du, Guang Qian ; Zhang, Meng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-81b46366c122b7537f6e10f011791a1b5fd58978e6e2ead5abb8daad3c872dd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Chang Zhi</creatorcontrib><creatorcontrib>Long, Li Juan</creatorcontrib><creatorcontrib>Du, Guang Qian</creatorcontrib><creatorcontrib>Zhang, Meng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Chang Zhi</au><au>Long, Li Juan</au><au>Du, Guang Qian</au><au>Zhang, Meng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Damage Detection Based on Curvature Mode Shapes and Neural Network Technique</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2012-10-01</date><risdate>2012</risdate><volume>204-208</volume><spage>2907</spage><epage>2912</epage><pages>2907-2912</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3037854847</isbn><isbn>9783037854846</isbn><abstract>On the basis of the theory that natural frequency changes and curvature mode shapes can be employed to determine the locations and degrees of damage of structures, a BP neural network technique with an improved input structure was developed. The two networks were used for diagnosis of structural damage, and structural damages were predicted using gray theory. The results showed that the gray theory to predict the structural damage neural network was applicable to irregular objects such injury problem diagnosis.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.204-208.2907</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2012-10, Vol.204-208, p.2907-2912
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1442862635
source Scientific.net Journals
title Structural Damage Detection Based on Curvature Mode Shapes and Neural Network Technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Damage%20Detection%20Based%20on%20Curvature%20Mode%20Shapes%20and%20Neural%20Network%20Technique&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Zhu,%20Chang%20Zhi&rft.date=2012-10-01&rft.volume=204-208&rft.spage=2907&rft.epage=2912&rft.pages=2907-2912&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3037854847&rft.isbn_list=9783037854846&rft_id=info:doi/10.4028/www.scientific.net/AMM.204-208.2907&rft_dat=%3Cproquest_cross%3E3102522701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442862635&rft_id=info:pmid/&rfr_iscdi=true