Structural Damage Detection Based on Curvature Mode Shapes and Neural Network Technique
On the basis of the theory that natural frequency changes and curvature mode shapes can be employed to determine the locations and degrees of damage of structures, a BP neural network technique with an improved input structure was developed. The two networks were used for diagnosis of structural dam...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2012-10, Vol.204-208, p.2907-2912 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2912 |
---|---|
container_issue | |
container_start_page | 2907 |
container_title | Applied Mechanics and Materials |
container_volume | 204-208 |
creator | Zhu, Chang Zhi Long, Li Juan Du, Guang Qian Zhang, Meng |
description | On the basis of the theory that natural frequency changes and curvature mode shapes can be employed to determine the locations and degrees of damage of structures, a BP neural network technique with an improved input structure was developed. The two networks were used for diagnosis of structural damage, and structural damages were predicted using gray theory. The results showed that the gray theory to predict the structural damage neural network was applicable to irregular objects such injury problem diagnosis. |
doi_str_mv | 10.4028/www.scientific.net/AMM.204-208.2907 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442862635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102522701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-81b46366c122b7537f6e10f011791a1b5fd58978e6e2ead5abb8daad3c872dd83</originalsourceid><addsrcrecordid>eNqVkMlOwzAURS0GifEfLLFEST3FdpdQyiDRsgDE0nLsFxqGpNgOFX-PoUiwZWE9S---c6WD0DElpSBMj1arVRldC11qm9aVHaTRyWxWMiIKRnTJxkRtoF0qJSuU0GwT7XHCla6EFmrre0GKMedyB-3F-ESIFFToXfRwm8Lg0hDsCz6zr_YR8BkkcKntO3xqI3icP5MhvNscAjzrPeDbhV1CxLbzeA7fp3NIqz484ztwi659G-AAbTf2JcLhz9xH9-fTu8llcX1zcTU5uS4cJ1UqNK2F5FI6ylitKq4aCZQ0hFI1ppbWVeMrPVYaJDCwvrJ1rb21njutmPea76OjNXcZ-lwbk3nqh9DlSkOFYFoyyaucmqxTLvQxBmjMMrSvNnwYSsyXXpP1ml-9Jus1Wa_JevPT5ktvpkzXlBRsF7OkxZ-yf3A-AWtXi_4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442862635</pqid></control><display><type>article</type><title>Structural Damage Detection Based on Curvature Mode Shapes and Neural Network Technique</title><source>Scientific.net Journals</source><creator>Zhu, Chang Zhi ; Long, Li Juan ; Du, Guang Qian ; Zhang, Meng</creator><creatorcontrib>Zhu, Chang Zhi ; Long, Li Juan ; Du, Guang Qian ; Zhang, Meng</creatorcontrib><description>On the basis of the theory that natural frequency changes and curvature mode shapes can be employed to determine the locations and degrees of damage of structures, a BP neural network technique with an improved input structure was developed. The two networks were used for diagnosis of structural damage, and structural damages were predicted using gray theory. The results showed that the gray theory to predict the structural damage neural network was applicable to irregular objects such injury problem diagnosis.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3037854847</identifier><identifier>ISBN: 9783037854846</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.204-208.2907</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2012-10, Vol.204-208, p.2907-2912</ispartof><rights>2012 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Oct 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/1975?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhu, Chang Zhi</creatorcontrib><creatorcontrib>Long, Li Juan</creatorcontrib><creatorcontrib>Du, Guang Qian</creatorcontrib><creatorcontrib>Zhang, Meng</creatorcontrib><title>Structural Damage Detection Based on Curvature Mode Shapes and Neural Network Technique</title><title>Applied Mechanics and Materials</title><description>On the basis of the theory that natural frequency changes and curvature mode shapes can be employed to determine the locations and degrees of damage of structures, a BP neural network technique with an improved input structure was developed. The two networks were used for diagnosis of structural damage, and structural damages were predicted using gray theory. The results showed that the gray theory to predict the structural damage neural network was applicable to irregular objects such injury problem diagnosis.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3037854847</isbn><isbn>9783037854846</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqVkMlOwzAURS0GifEfLLFEST3FdpdQyiDRsgDE0nLsFxqGpNgOFX-PoUiwZWE9S---c6WD0DElpSBMj1arVRldC11qm9aVHaTRyWxWMiIKRnTJxkRtoF0qJSuU0GwT7XHCla6EFmrre0GKMedyB-3F-ESIFFToXfRwm8Lg0hDsCz6zr_YR8BkkcKntO3xqI3icP5MhvNscAjzrPeDbhV1CxLbzeA7fp3NIqz484ztwi659G-AAbTf2JcLhz9xH9-fTu8llcX1zcTU5uS4cJ1UqNK2F5FI6ylitKq4aCZQ0hFI1ppbWVeMrPVYaJDCwvrJ1rb21njutmPea76OjNXcZ-lwbk3nqh9DlSkOFYFoyyaucmqxTLvQxBmjMMrSvNnwYSsyXXpP1ml-9Jus1Wa_JevPT5ktvpkzXlBRsF7OkxZ-yf3A-AWtXi_4</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Zhu, Chang Zhi</creator><creator>Long, Li Juan</creator><creator>Du, Guang Qian</creator><creator>Zhang, Meng</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20121001</creationdate><title>Structural Damage Detection Based on Curvature Mode Shapes and Neural Network Technique</title><author>Zhu, Chang Zhi ; Long, Li Juan ; Du, Guang Qian ; Zhang, Meng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-81b46366c122b7537f6e10f011791a1b5fd58978e6e2ead5abb8daad3c872dd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Chang Zhi</creatorcontrib><creatorcontrib>Long, Li Juan</creatorcontrib><creatorcontrib>Du, Guang Qian</creatorcontrib><creatorcontrib>Zhang, Meng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Chang Zhi</au><au>Long, Li Juan</au><au>Du, Guang Qian</au><au>Zhang, Meng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Damage Detection Based on Curvature Mode Shapes and Neural Network Technique</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2012-10-01</date><risdate>2012</risdate><volume>204-208</volume><spage>2907</spage><epage>2912</epage><pages>2907-2912</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3037854847</isbn><isbn>9783037854846</isbn><abstract>On the basis of the theory that natural frequency changes and curvature mode shapes can be employed to determine the locations and degrees of damage of structures, a BP neural network technique with an improved input structure was developed. The two networks were used for diagnosis of structural damage, and structural damages were predicted using gray theory. The results showed that the gray theory to predict the structural damage neural network was applicable to irregular objects such injury problem diagnosis.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.204-208.2907</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2012-10, Vol.204-208, p.2907-2912 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_journals_1442862635 |
source | Scientific.net Journals |
title | Structural Damage Detection Based on Curvature Mode Shapes and Neural Network Technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Damage%20Detection%20Based%20on%20Curvature%20Mode%20Shapes%20and%20Neural%20Network%20Technique&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Zhu,%20Chang%20Zhi&rft.date=2012-10-01&rft.volume=204-208&rft.spage=2907&rft.epage=2912&rft.pages=2907-2912&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3037854847&rft.isbn_list=9783037854846&rft_id=info:doi/10.4028/www.scientific.net/AMM.204-208.2907&rft_dat=%3Cproquest_cross%3E3102522701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442862635&rft_id=info:pmid/&rfr_iscdi=true |