Moisture Absorption of Laminated Bamboo Composite and its Influence on Mechanical Properties
Laminated bamboo composite (LBC) has received a great attention due to its environmental friendly characteristics and excellent physical and mechanical properties, therefore it is necessary to investigate the durability of the LBC material in ambient environment (temperature and relative humidity)....
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2012-10, Vol.204-208, p.4165-4172 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4172 |
---|---|
container_issue | |
container_start_page | 4165 |
container_title | Applied Mechanics and Materials |
container_volume | 204-208 |
creator | Wang, Ge Yu, Zi Xuan Jiang, Ze Hui |
description | Laminated bamboo composite (LBC) has received a great attention due to its environmental friendly characteristics and excellent physical and mechanical properties, therefore it is necessary to investigate the durability of the LBC material in ambient environment (temperature and relative humidity). In this paper, firstly, LBC materials were manufactured in laboratory. Moisture absorption and thickness swelling kinetics of the materials at different temperatures and relative humidity were investigated. Then effects of ambient environment on mechanical properties were evaluated at three different ambient temperatures (21 °C, 36 °C, and 60 °C) and different moisture contents. It is found that the moisture absorption and the thickness swelling increase with temperature, relative humidity and ageing time before an equilibrium condition is satisfied. Parameters of the diffusion coefficient and the swelling rate increase with the temperature. In addition, there is a significant decrease in mechanical properties of the moisture-saturated specimens compared to the dry ones. And the degradation of the bending property and the compressive strength is found to be a function of the moisture absorption during the initial period and becomes stable as the absorption process approaches equilibrium. Finally, surface erosions are shown by scanning electron microscopy (SEM) after the hydrothermal aging at 60 °C. |
doi_str_mv | 10.4028/www.scientific.net/AMM.204-208.4165 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442858389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102501991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-cea7e2458078819b51d5f64084e8eb15769459b08c89ecf93fdda8907b8fc2bd3</originalsourceid><addsrcrecordid>eNqVkMFqGzEQhkXaQG037yDosexa2tXuzh5dk7QGm-TQ3AJCqx0RGVvaSjImbx-lLjTXHIY5zD_fMB8h3zkrBatgeT6fy6gtumSN1aXDtFztdmXFRFExKAVvmysy421bFZ2A6hOZ16zuoBEgus9_B6zo67r9QuYx7hlrBRcwI087b2M6BaSrIfowJesd9YZu1dE6lXCkP9Rx8J6u_XHy0Sakyo3Upkg3zhxO6DTSvLJD_ayc1epAH4KfMCSL8Su5NuoQ8eZfX5DHu9vf61_F9v7nZr3aFrrueCo0qg4r0QDrAHg_NHxsTCsYCAQceNO1vWj6gYGGHrXpazOOCnrWDWB0NYz1gny7cKfg_5wwJrn3p-DyScmFqKCBGvqcWl9SOvgYAxo5BXtU4UVyJt8cy-xY_ncss2OZHcvsOBfIN8eZcnuhpKBcTPntd8c-wHkFKmGOSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442858389</pqid></control><display><type>article</type><title>Moisture Absorption of Laminated Bamboo Composite and its Influence on Mechanical Properties</title><source>Scientific.net Journals</source><creator>Wang, Ge ; Yu, Zi Xuan ; Jiang, Ze Hui</creator><creatorcontrib>Wang, Ge ; Yu, Zi Xuan ; Jiang, Ze Hui</creatorcontrib><description>Laminated bamboo composite (LBC) has received a great attention due to its environmental friendly characteristics and excellent physical and mechanical properties, therefore it is necessary to investigate the durability of the LBC material in ambient environment (temperature and relative humidity). In this paper, firstly, LBC materials were manufactured in laboratory. Moisture absorption and thickness swelling kinetics of the materials at different temperatures and relative humidity were investigated. Then effects of ambient environment on mechanical properties were evaluated at three different ambient temperatures (21 °C, 36 °C, and 60 °C) and different moisture contents. It is found that the moisture absorption and the thickness swelling increase with temperature, relative humidity and ageing time before an equilibrium condition is satisfied. Parameters of the diffusion coefficient and the swelling rate increase with the temperature. In addition, there is a significant decrease in mechanical properties of the moisture-saturated specimens compared to the dry ones. And the degradation of the bending property and the compressive strength is found to be a function of the moisture absorption during the initial period and becomes stable as the absorption process approaches equilibrium. Finally, surface erosions are shown by scanning electron microscopy (SEM) after the hydrothermal aging at 60 °C.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3037854847</identifier><identifier>ISBN: 9783037854846</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.204-208.4165</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2012-10, Vol.204-208, p.4165-4172</ispartof><rights>2012 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Oct 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-cea7e2458078819b51d5f64084e8eb15769459b08c89ecf93fdda8907b8fc2bd3</citedby><cites>FETCH-LOGICAL-c371t-cea7e2458078819b51d5f64084e8eb15769459b08c89ecf93fdda8907b8fc2bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/1975?width=600</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Wang, Ge</creatorcontrib><creatorcontrib>Yu, Zi Xuan</creatorcontrib><creatorcontrib>Jiang, Ze Hui</creatorcontrib><title>Moisture Absorption of Laminated Bamboo Composite and its Influence on Mechanical Properties</title><title>Applied Mechanics and Materials</title><description>Laminated bamboo composite (LBC) has received a great attention due to its environmental friendly characteristics and excellent physical and mechanical properties, therefore it is necessary to investigate the durability of the LBC material in ambient environment (temperature and relative humidity). In this paper, firstly, LBC materials were manufactured in laboratory. Moisture absorption and thickness swelling kinetics of the materials at different temperatures and relative humidity were investigated. Then effects of ambient environment on mechanical properties were evaluated at three different ambient temperatures (21 °C, 36 °C, and 60 °C) and different moisture contents. It is found that the moisture absorption and the thickness swelling increase with temperature, relative humidity and ageing time before an equilibrium condition is satisfied. Parameters of the diffusion coefficient and the swelling rate increase with the temperature. In addition, there is a significant decrease in mechanical properties of the moisture-saturated specimens compared to the dry ones. And the degradation of the bending property and the compressive strength is found to be a function of the moisture absorption during the initial period and becomes stable as the absorption process approaches equilibrium. Finally, surface erosions are shown by scanning electron microscopy (SEM) after the hydrothermal aging at 60 °C.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3037854847</isbn><isbn>9783037854846</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqVkMFqGzEQhkXaQG037yDosexa2tXuzh5dk7QGm-TQ3AJCqx0RGVvaSjImbx-lLjTXHIY5zD_fMB8h3zkrBatgeT6fy6gtumSN1aXDtFztdmXFRFExKAVvmysy421bFZ2A6hOZ16zuoBEgus9_B6zo67r9QuYx7hlrBRcwI087b2M6BaSrIfowJesd9YZu1dE6lXCkP9Rx8J6u_XHy0Sakyo3Upkg3zhxO6DTSvLJD_ayc1epAH4KfMCSL8Su5NuoQ8eZfX5DHu9vf61_F9v7nZr3aFrrueCo0qg4r0QDrAHg_NHxsTCsYCAQceNO1vWj6gYGGHrXpazOOCnrWDWB0NYz1gny7cKfg_5wwJrn3p-DyScmFqKCBGvqcWl9SOvgYAxo5BXtU4UVyJt8cy-xY_ncss2OZHcvsOBfIN8eZcnuhpKBcTPntd8c-wHkFKmGOSw</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Wang, Ge</creator><creator>Yu, Zi Xuan</creator><creator>Jiang, Ze Hui</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20121001</creationdate><title>Moisture Absorption of Laminated Bamboo Composite and its Influence on Mechanical Properties</title><author>Wang, Ge ; Yu, Zi Xuan ; Jiang, Ze Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-cea7e2458078819b51d5f64084e8eb15769459b08c89ecf93fdda8907b8fc2bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ge</creatorcontrib><creatorcontrib>Yu, Zi Xuan</creatorcontrib><creatorcontrib>Jiang, Ze Hui</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ge</au><au>Yu, Zi Xuan</au><au>Jiang, Ze Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moisture Absorption of Laminated Bamboo Composite and its Influence on Mechanical Properties</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2012-10-01</date><risdate>2012</risdate><volume>204-208</volume><spage>4165</spage><epage>4172</epage><pages>4165-4172</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3037854847</isbn><isbn>9783037854846</isbn><abstract>Laminated bamboo composite (LBC) has received a great attention due to its environmental friendly characteristics and excellent physical and mechanical properties, therefore it is necessary to investigate the durability of the LBC material in ambient environment (temperature and relative humidity). In this paper, firstly, LBC materials were manufactured in laboratory. Moisture absorption and thickness swelling kinetics of the materials at different temperatures and relative humidity were investigated. Then effects of ambient environment on mechanical properties were evaluated at three different ambient temperatures (21 °C, 36 °C, and 60 °C) and different moisture contents. It is found that the moisture absorption and the thickness swelling increase with temperature, relative humidity and ageing time before an equilibrium condition is satisfied. Parameters of the diffusion coefficient and the swelling rate increase with the temperature. In addition, there is a significant decrease in mechanical properties of the moisture-saturated specimens compared to the dry ones. And the degradation of the bending property and the compressive strength is found to be a function of the moisture absorption during the initial period and becomes stable as the absorption process approaches equilibrium. Finally, surface erosions are shown by scanning electron microscopy (SEM) after the hydrothermal aging at 60 °C.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.204-208.4165</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2012-10, Vol.204-208, p.4165-4172 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_journals_1442858389 |
source | Scientific.net Journals |
title | Moisture Absorption of Laminated Bamboo Composite and its Influence on Mechanical Properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moisture%20Absorption%20of%20Laminated%20Bamboo%20Composite%20and%20its%20Influence%20on%20Mechanical%20Properties&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Wang,%20Ge&rft.date=2012-10-01&rft.volume=204-208&rft.spage=4165&rft.epage=4172&rft.pages=4165-4172&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3037854847&rft.isbn_list=9783037854846&rft_id=info:doi/10.4028/www.scientific.net/AMM.204-208.4165&rft_dat=%3Cproquest_cross%3E3102501991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442858389&rft_id=info:pmid/&rfr_iscdi=true |