Denoising and Defect Diagnosis of Material Ultrasonic Detection signal Based on Best Wavelet Packet Base

The use of ultrasonic nondestructive testing of material internal defect,ultrasonic signal acquired at actual working spot usually includes large amount of noise.Extraction of the defect characteristic information will be influeced greatly if the ultrasonic signal is not effectively denoised. A new...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2013-01, Vol.239-240, p.52-56
Hauptverfasser: Yan, Xiao Ling, Dong, Shi Yun, Xu, Bin Shi, Wang, Wang Long
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue
container_start_page 52
container_title Applied Mechanics and Materials
container_volume 239-240
creator Yan, Xiao Ling
Dong, Shi Yun
Xu, Bin Shi
Wang, Wang Long
description The use of ultrasonic nondestructive testing of material internal defect,ultrasonic signal acquired at actual working spot usually includes large amount of noise.Extraction of the defect characteristic information will be influeced greatly if the ultrasonic signal is not effectively denoised. A new method based on best wavelet packet base is present to denoise and detect the ultrasonic signal. The superiority of new method is verified by simulation examples. Experiment of processing ultrasonic signal which comes from the 45 Steel specimen with flaws has been implemented. The accurate information that characterizes of defect size,location can be extracted from the processing result, the results show that the new method based on best wavelet packet base is in favor of enhancing the degree of accuracy for quantitatively analyzing the defect inside the material.
doi_str_mv 10.4028/www.scientific.net/AMM.239-240.52
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442767986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102343491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-4bf50efde1a752e5aaeaf084278097b1ee1952d1e09fb15cb43f23f93bc516183</originalsourceid><addsrcrecordid>eNqNkMtOIzEQRS0e0vD6B0uzYtGNn93uZUhgBokIFiCWltspB0NwQ9sQ8fcUZKRhyapUulenSoeQY85qxYQ5Wa_XdfYRUokh-jpBOZnM57WQXSUUq7XYInu8aUTVKiO2yVHXGslka7RWWu18ZazqpGx-kf2cHxhrFFdmj9zPIA0xx7SkLi3oDAL4QmfRLdOQY6ZDoHNXYIxuRW9XZXR5SNFjr2AvDonmuEyYnboMC4r7KeRC79wbrKDQa-cfcXyGh2Q3uFWGo3_zgNyen91M_1aXV38uppPLystGl0r1QTMIC-Cu1QK0c-ACM0q0hnVtzwF4p8WCA-tCz7XvlQxChk72XvOGG3lAfm-4z-Pw8orP2IfhdcQXs-UKMU3bmQZbk03Lj0POIwT7PMYnN75bzuyncIvC7X_hFoVbFG5RuEXhVgtkTDcMtJIy-rj_durHlA8r0pFl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442767986</pqid></control><display><type>article</type><title>Denoising and Defect Diagnosis of Material Ultrasonic Detection signal Based on Best Wavelet Packet Base</title><source>Scientific.net Journals</source><creator>Yan, Xiao Ling ; Dong, Shi Yun ; Xu, Bin Shi ; Wang, Wang Long</creator><creatorcontrib>Yan, Xiao Ling ; Dong, Shi Yun ; Xu, Bin Shi ; Wang, Wang Long</creatorcontrib><description>The use of ultrasonic nondestructive testing of material internal defect,ultrasonic signal acquired at actual working spot usually includes large amount of noise.Extraction of the defect characteristic information will be influeced greatly if the ultrasonic signal is not effectively denoised. A new method based on best wavelet packet base is present to denoise and detect the ultrasonic signal. The superiority of new method is verified by simulation examples. Experiment of processing ultrasonic signal which comes from the 45 Steel specimen with flaws has been implemented. The accurate information that characterizes of defect size,location can be extracted from the processing result, the results show that the new method based on best wavelet packet base is in favor of enhancing the degree of accuracy for quantitatively analyzing the defect inside the material.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783037855454</identifier><identifier>ISBN: 3037855452</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.239-240.52</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2013-01, Vol.239-240, p.52-56</ispartof><rights>2013 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Dec 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-4bf50efde1a752e5aaeaf084278097b1ee1952d1e09fb15cb43f23f93bc516183</citedby><cites>FETCH-LOGICAL-c365t-4bf50efde1a752e5aaeaf084278097b1ee1952d1e09fb15cb43f23f93bc516183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2110?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yan, Xiao Ling</creatorcontrib><creatorcontrib>Dong, Shi Yun</creatorcontrib><creatorcontrib>Xu, Bin Shi</creatorcontrib><creatorcontrib>Wang, Wang Long</creatorcontrib><title>Denoising and Defect Diagnosis of Material Ultrasonic Detection signal Based on Best Wavelet Packet Base</title><title>Applied Mechanics and Materials</title><description>The use of ultrasonic nondestructive testing of material internal defect,ultrasonic signal acquired at actual working spot usually includes large amount of noise.Extraction of the defect characteristic information will be influeced greatly if the ultrasonic signal is not effectively denoised. A new method based on best wavelet packet base is present to denoise and detect the ultrasonic signal. The superiority of new method is verified by simulation examples. Experiment of processing ultrasonic signal which comes from the 45 Steel specimen with flaws has been implemented. The accurate information that characterizes of defect size,location can be extracted from the processing result, the results show that the new method based on best wavelet packet base is in favor of enhancing the degree of accuracy for quantitatively analyzing the defect inside the material.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783037855454</isbn><isbn>3037855452</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkMtOIzEQRS0e0vD6B0uzYtGNn93uZUhgBokIFiCWltspB0NwQ9sQ8fcUZKRhyapUulenSoeQY85qxYQ5Wa_XdfYRUokh-jpBOZnM57WQXSUUq7XYInu8aUTVKiO2yVHXGslka7RWWu18ZazqpGx-kf2cHxhrFFdmj9zPIA0xx7SkLi3oDAL4QmfRLdOQY6ZDoHNXYIxuRW9XZXR5SNFjr2AvDonmuEyYnboMC4r7KeRC79wbrKDQa-cfcXyGh2Q3uFWGo3_zgNyen91M_1aXV38uppPLystGl0r1QTMIC-Cu1QK0c-ACM0q0hnVtzwF4p8WCA-tCz7XvlQxChk72XvOGG3lAfm-4z-Pw8orP2IfhdcQXs-UKMU3bmQZbk03Lj0POIwT7PMYnN75bzuyncIvC7X_hFoVbFG5RuEXhVgtkTDcMtJIy-rj_durHlA8r0pFl</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Yan, Xiao Ling</creator><creator>Dong, Shi Yun</creator><creator>Xu, Bin Shi</creator><creator>Wang, Wang Long</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130101</creationdate><title>Denoising and Defect Diagnosis of Material Ultrasonic Detection signal Based on Best Wavelet Packet Base</title><author>Yan, Xiao Ling ; Dong, Shi Yun ; Xu, Bin Shi ; Wang, Wang Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-4bf50efde1a752e5aaeaf084278097b1ee1952d1e09fb15cb43f23f93bc516183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Xiao Ling</creatorcontrib><creatorcontrib>Dong, Shi Yun</creatorcontrib><creatorcontrib>Xu, Bin Shi</creatorcontrib><creatorcontrib>Wang, Wang Long</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Xiao Ling</au><au>Dong, Shi Yun</au><au>Xu, Bin Shi</au><au>Wang, Wang Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Denoising and Defect Diagnosis of Material Ultrasonic Detection signal Based on Best Wavelet Packet Base</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>239-240</volume><spage>52</spage><epage>56</epage><pages>52-56</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783037855454</isbn><isbn>3037855452</isbn><abstract>The use of ultrasonic nondestructive testing of material internal defect,ultrasonic signal acquired at actual working spot usually includes large amount of noise.Extraction of the defect characteristic information will be influeced greatly if the ultrasonic signal is not effectively denoised. A new method based on best wavelet packet base is present to denoise and detect the ultrasonic signal. The superiority of new method is verified by simulation examples. Experiment of processing ultrasonic signal which comes from the 45 Steel specimen with flaws has been implemented. The accurate information that characterizes of defect size,location can be extracted from the processing result, the results show that the new method based on best wavelet packet base is in favor of enhancing the degree of accuracy for quantitatively analyzing the defect inside the material.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.239-240.52</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2013-01, Vol.239-240, p.52-56
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1442767986
source Scientific.net Journals
title Denoising and Defect Diagnosis of Material Ultrasonic Detection signal Based on Best Wavelet Packet Base
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T13%3A59%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Denoising%20and%20Defect%20Diagnosis%20of%20Material%20Ultrasonic%20Detection%20signal%20Based%20on%20Best%20Wavelet%20Packet%20Base&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Yan,%20Xiao%20Ling&rft.date=2013-01-01&rft.volume=239-240&rft.spage=52&rft.epage=56&rft.pages=52-56&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783037855454&rft.isbn_list=3037855452&rft_id=info:doi/10.4028/www.scientific.net/AMM.239-240.52&rft_dat=%3Cproquest_cross%3E3102343491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442767986&rft_id=info:pmid/&rfr_iscdi=true