Denoising and Defect Diagnosis of Material Ultrasonic Detection signal Based on Best Wavelet Packet Base
The use of ultrasonic nondestructive testing of material internal defect,ultrasonic signal acquired at actual working spot usually includes large amount of noise.Extraction of the defect characteristic information will be influeced greatly if the ultrasonic signal is not effectively denoised. A new...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2013-01, Vol.239-240, p.52-56 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56 |
---|---|
container_issue | |
container_start_page | 52 |
container_title | Applied Mechanics and Materials |
container_volume | 239-240 |
creator | Yan, Xiao Ling Dong, Shi Yun Xu, Bin Shi Wang, Wang Long |
description | The use of ultrasonic nondestructive testing of material internal defect,ultrasonic signal acquired at actual working spot usually includes large amount of noise.Extraction of the defect characteristic information will be influeced greatly if the ultrasonic signal is not effectively denoised. A new method based on best wavelet packet base is present to denoise and detect the ultrasonic signal. The superiority of new method is verified by simulation examples. Experiment of processing ultrasonic signal which comes from the 45 Steel specimen with flaws has been implemented. The accurate information that characterizes of defect size,location can be extracted from the processing result, the results show that the new method based on best wavelet packet base is in favor of enhancing the degree of accuracy for quantitatively analyzing the defect inside the material. |
doi_str_mv | 10.4028/www.scientific.net/AMM.239-240.52 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442767986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102343491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-4bf50efde1a752e5aaeaf084278097b1ee1952d1e09fb15cb43f23f93bc516183</originalsourceid><addsrcrecordid>eNqNkMtOIzEQRS0e0vD6B0uzYtGNn93uZUhgBokIFiCWltspB0NwQ9sQ8fcUZKRhyapUulenSoeQY85qxYQ5Wa_XdfYRUokh-jpBOZnM57WQXSUUq7XYInu8aUTVKiO2yVHXGslka7RWWu18ZazqpGx-kf2cHxhrFFdmj9zPIA0xx7SkLi3oDAL4QmfRLdOQY6ZDoHNXYIxuRW9XZXR5SNFjr2AvDonmuEyYnboMC4r7KeRC79wbrKDQa-cfcXyGh2Q3uFWGo3_zgNyen91M_1aXV38uppPLystGl0r1QTMIC-Cu1QK0c-ACM0q0hnVtzwF4p8WCA-tCz7XvlQxChk72XvOGG3lAfm-4z-Pw8orP2IfhdcQXs-UKMU3bmQZbk03Lj0POIwT7PMYnN75bzuyncIvC7X_hFoVbFG5RuEXhVgtkTDcMtJIy-rj_durHlA8r0pFl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442767986</pqid></control><display><type>article</type><title>Denoising and Defect Diagnosis of Material Ultrasonic Detection signal Based on Best Wavelet Packet Base</title><source>Scientific.net Journals</source><creator>Yan, Xiao Ling ; Dong, Shi Yun ; Xu, Bin Shi ; Wang, Wang Long</creator><creatorcontrib>Yan, Xiao Ling ; Dong, Shi Yun ; Xu, Bin Shi ; Wang, Wang Long</creatorcontrib><description>The use of ultrasonic nondestructive testing of material internal defect,ultrasonic signal acquired at actual working spot usually includes large amount of noise.Extraction of the defect characteristic information will be influeced greatly if the ultrasonic signal is not effectively denoised. A new method based on best wavelet packet base is present to denoise and detect the ultrasonic signal. The superiority of new method is verified by simulation examples. Experiment of processing ultrasonic signal which comes from the 45 Steel specimen with flaws has been implemented. The accurate information that characterizes of defect size,location can be extracted from the processing result, the results show that the new method based on best wavelet packet base is in favor of enhancing the degree of accuracy for quantitatively analyzing the defect inside the material.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783037855454</identifier><identifier>ISBN: 3037855452</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.239-240.52</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2013-01, Vol.239-240, p.52-56</ispartof><rights>2013 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Dec 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-4bf50efde1a752e5aaeaf084278097b1ee1952d1e09fb15cb43f23f93bc516183</citedby><cites>FETCH-LOGICAL-c365t-4bf50efde1a752e5aaeaf084278097b1ee1952d1e09fb15cb43f23f93bc516183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2110?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yan, Xiao Ling</creatorcontrib><creatorcontrib>Dong, Shi Yun</creatorcontrib><creatorcontrib>Xu, Bin Shi</creatorcontrib><creatorcontrib>Wang, Wang Long</creatorcontrib><title>Denoising and Defect Diagnosis of Material Ultrasonic Detection signal Based on Best Wavelet Packet Base</title><title>Applied Mechanics and Materials</title><description>The use of ultrasonic nondestructive testing of material internal defect,ultrasonic signal acquired at actual working spot usually includes large amount of noise.Extraction of the defect characteristic information will be influeced greatly if the ultrasonic signal is not effectively denoised. A new method based on best wavelet packet base is present to denoise and detect the ultrasonic signal. The superiority of new method is verified by simulation examples. Experiment of processing ultrasonic signal which comes from the 45 Steel specimen with flaws has been implemented. The accurate information that characterizes of defect size,location can be extracted from the processing result, the results show that the new method based on best wavelet packet base is in favor of enhancing the degree of accuracy for quantitatively analyzing the defect inside the material.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783037855454</isbn><isbn>3037855452</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkMtOIzEQRS0e0vD6B0uzYtGNn93uZUhgBokIFiCWltspB0NwQ9sQ8fcUZKRhyapUulenSoeQY85qxYQ5Wa_XdfYRUokh-jpBOZnM57WQXSUUq7XYInu8aUTVKiO2yVHXGslka7RWWu18ZazqpGx-kf2cHxhrFFdmj9zPIA0xx7SkLi3oDAL4QmfRLdOQY6ZDoHNXYIxuRW9XZXR5SNFjr2AvDonmuEyYnboMC4r7KeRC79wbrKDQa-cfcXyGh2Q3uFWGo3_zgNyen91M_1aXV38uppPLystGl0r1QTMIC-Cu1QK0c-ACM0q0hnVtzwF4p8WCA-tCz7XvlQxChk72XvOGG3lAfm-4z-Pw8orP2IfhdcQXs-UKMU3bmQZbk03Lj0POIwT7PMYnN75bzuyncIvC7X_hFoVbFG5RuEXhVgtkTDcMtJIy-rj_durHlA8r0pFl</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Yan, Xiao Ling</creator><creator>Dong, Shi Yun</creator><creator>Xu, Bin Shi</creator><creator>Wang, Wang Long</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130101</creationdate><title>Denoising and Defect Diagnosis of Material Ultrasonic Detection signal Based on Best Wavelet Packet Base</title><author>Yan, Xiao Ling ; Dong, Shi Yun ; Xu, Bin Shi ; Wang, Wang Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-4bf50efde1a752e5aaeaf084278097b1ee1952d1e09fb15cb43f23f93bc516183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Xiao Ling</creatorcontrib><creatorcontrib>Dong, Shi Yun</creatorcontrib><creatorcontrib>Xu, Bin Shi</creatorcontrib><creatorcontrib>Wang, Wang Long</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Xiao Ling</au><au>Dong, Shi Yun</au><au>Xu, Bin Shi</au><au>Wang, Wang Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Denoising and Defect Diagnosis of Material Ultrasonic Detection signal Based on Best Wavelet Packet Base</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>239-240</volume><spage>52</spage><epage>56</epage><pages>52-56</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783037855454</isbn><isbn>3037855452</isbn><abstract>The use of ultrasonic nondestructive testing of material internal defect,ultrasonic signal acquired at actual working spot usually includes large amount of noise.Extraction of the defect characteristic information will be influeced greatly if the ultrasonic signal is not effectively denoised. A new method based on best wavelet packet base is present to denoise and detect the ultrasonic signal. The superiority of new method is verified by simulation examples. Experiment of processing ultrasonic signal which comes from the 45 Steel specimen with flaws has been implemented. The accurate information that characterizes of defect size,location can be extracted from the processing result, the results show that the new method based on best wavelet packet base is in favor of enhancing the degree of accuracy for quantitatively analyzing the defect inside the material.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.239-240.52</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2013-01, Vol.239-240, p.52-56 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_journals_1442767986 |
source | Scientific.net Journals |
title | Denoising and Defect Diagnosis of Material Ultrasonic Detection signal Based on Best Wavelet Packet Base |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T13%3A59%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Denoising%20and%20Defect%20Diagnosis%20of%20Material%20Ultrasonic%20Detection%20signal%20Based%20on%20Best%20Wavelet%20Packet%20Base&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Yan,%20Xiao%20Ling&rft.date=2013-01-01&rft.volume=239-240&rft.spage=52&rft.epage=56&rft.pages=52-56&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783037855454&rft.isbn_list=3037855452&rft_id=info:doi/10.4028/www.scientific.net/AMM.239-240.52&rft_dat=%3Cproquest_cross%3E3102343491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442767986&rft_id=info:pmid/&rfr_iscdi=true |