Optimization of Large Vessels Principal Parameters Based on Hybrid Particle Swarm Optimization Algorithm

The multi-objective optimization design model of large vessels principal parameters was established, according to the characteristics of large ship’s scheme design. The ship stability, rapidity, and seakeeping were selected as the three objectives of the optimization model, and the minimum-deviation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2013-01, Vol.253-255, p.2172-2175
Hauptverfasser: Hu, Yu Long, Huang, Sheng, Hou, Yuan Hang, Wang, Wen Quan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2175
container_issue
container_start_page 2172
container_title Applied Mechanics and Materials
container_volume 253-255
creator Hu, Yu Long
Huang, Sheng
Hou, Yuan Hang
Wang, Wen Quan
description The multi-objective optimization design model of large vessels principal parameters was established, according to the characteristics of large ship’s scheme design. The ship stability, rapidity, and seakeeping were selected as the three objectives of the optimization model, and the minimum-deviation method was adopted to establish the unified objective function. The Particle Swarm Optimization and the Artificial Bee Colony algorithm were combined to the hybrid particle swarm algorithm, which then was used to solve the mathematical model. Through the simulation calculation, the results show that the hybrid algorithm has a better optimization performance and it is feasible for hybrid algorithm to apply in the preliminary design of large vessels.
doi_str_mv 10.4028/www.scientific.net/AMM.253-255.2172
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442729333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102265131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-921edeb29d08d3fcae15fe89394c7beee343bae591d802eba0269242242d061c3</originalsourceid><addsrcrecordid>eNqVkNlKAzEUhoMLWJd3CHgpM2ad5bKWukBLBZfbkMmcsZFZapJS9OlNraBeCudwLv6f78CH0AUlqSCsuNxsNqk3FvpgG2vSHsLleD5PmeQJkzJlNGd7aESzjCW5KNg-OivzghOeF1JmQh58ZSQpOc-O0LH3r4RkgopihJaLVbCd_dDBDj0eGjzT7gXwM3gPrcf3zvbGrnSL77XTHQRwHl9pDzWO9dv3ytl6GwVrWsAPG-06_Ic4bl8GZ8OyO0WHjW49nH3fE_R0PX2c3Cazxc3dZDxLDCcyJCWjUEPFypoUNW-MBiobKEpeCpNXAMAFrzTIktYFYVBpwrKSCRanJhk1_ASd77grN7ytwQf1OqxdH18qKgTLWZTAY2uyaxk3eO-gUStnO-3eFSVqq1xF5epHuYrKVVSuovK4Um2VR8p0RwlO9z6AWf569g_OJ6bpk78</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442729333</pqid></control><display><type>article</type><title>Optimization of Large Vessels Principal Parameters Based on Hybrid Particle Swarm Optimization Algorithm</title><source>eBook Academic Collection - Worldwide</source><source>Scientific.net Journals</source><creator>Hu, Yu Long ; Huang, Sheng ; Hou, Yuan Hang ; Wang, Wen Quan</creator><creatorcontrib>Hu, Yu Long ; Huang, Sheng ; Hou, Yuan Hang ; Wang, Wen Quan</creatorcontrib><description>The multi-objective optimization design model of large vessels principal parameters was established, according to the characteristics of large ship’s scheme design. The ship stability, rapidity, and seakeeping were selected as the three objectives of the optimization model, and the minimum-deviation method was adopted to establish the unified objective function. The Particle Swarm Optimization and the Artificial Bee Colony algorithm were combined to the hybrid particle swarm algorithm, which then was used to solve the mathematical model. Through the simulation calculation, the results show that the hybrid algorithm has a better optimization performance and it is feasible for hybrid algorithm to apply in the preliminary design of large vessels.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783037855645</identifier><identifier>ISBN: 3037855649</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.253-255.2172</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2013-01, Vol.253-255, p.2172-2175</ispartof><rights>2013 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Dec 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c305t-921edeb29d08d3fcae15fe89394c7beee343bae591d802eba0269242242d061c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2155?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hu, Yu Long</creatorcontrib><creatorcontrib>Huang, Sheng</creatorcontrib><creatorcontrib>Hou, Yuan Hang</creatorcontrib><creatorcontrib>Wang, Wen Quan</creatorcontrib><title>Optimization of Large Vessels Principal Parameters Based on Hybrid Particle Swarm Optimization Algorithm</title><title>Applied Mechanics and Materials</title><description>The multi-objective optimization design model of large vessels principal parameters was established, according to the characteristics of large ship’s scheme design. The ship stability, rapidity, and seakeeping were selected as the three objectives of the optimization model, and the minimum-deviation method was adopted to establish the unified objective function. The Particle Swarm Optimization and the Artificial Bee Colony algorithm were combined to the hybrid particle swarm algorithm, which then was used to solve the mathematical model. Through the simulation calculation, the results show that the hybrid algorithm has a better optimization performance and it is feasible for hybrid algorithm to apply in the preliminary design of large vessels.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783037855645</isbn><isbn>3037855649</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqVkNlKAzEUhoMLWJd3CHgpM2ad5bKWukBLBZfbkMmcsZFZapJS9OlNraBeCudwLv6f78CH0AUlqSCsuNxsNqk3FvpgG2vSHsLleD5PmeQJkzJlNGd7aESzjCW5KNg-OivzghOeF1JmQh58ZSQpOc-O0LH3r4RkgopihJaLVbCd_dDBDj0eGjzT7gXwM3gPrcf3zvbGrnSL77XTHQRwHl9pDzWO9dv3ytl6GwVrWsAPG-06_Ic4bl8GZ8OyO0WHjW49nH3fE_R0PX2c3Cazxc3dZDxLDCcyJCWjUEPFypoUNW-MBiobKEpeCpNXAMAFrzTIktYFYVBpwrKSCRanJhk1_ASd77grN7ytwQf1OqxdH18qKgTLWZTAY2uyaxk3eO-gUStnO-3eFSVqq1xF5epHuYrKVVSuovK4Um2VR8p0RwlO9z6AWf569g_OJ6bpk78</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Hu, Yu Long</creator><creator>Huang, Sheng</creator><creator>Hou, Yuan Hang</creator><creator>Wang, Wen Quan</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130101</creationdate><title>Optimization of Large Vessels Principal Parameters Based on Hybrid Particle Swarm Optimization Algorithm</title><author>Hu, Yu Long ; Huang, Sheng ; Hou, Yuan Hang ; Wang, Wen Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-921edeb29d08d3fcae15fe89394c7beee343bae591d802eba0269242242d061c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yu Long</creatorcontrib><creatorcontrib>Huang, Sheng</creatorcontrib><creatorcontrib>Hou, Yuan Hang</creatorcontrib><creatorcontrib>Wang, Wen Quan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yu Long</au><au>Huang, Sheng</au><au>Hou, Yuan Hang</au><au>Wang, Wen Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Large Vessels Principal Parameters Based on Hybrid Particle Swarm Optimization Algorithm</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>253-255</volume><spage>2172</spage><epage>2175</epage><pages>2172-2175</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783037855645</isbn><isbn>3037855649</isbn><abstract>The multi-objective optimization design model of large vessels principal parameters was established, according to the characteristics of large ship’s scheme design. The ship stability, rapidity, and seakeeping were selected as the three objectives of the optimization model, and the minimum-deviation method was adopted to establish the unified objective function. The Particle Swarm Optimization and the Artificial Bee Colony algorithm were combined to the hybrid particle swarm algorithm, which then was used to solve the mathematical model. Through the simulation calculation, the results show that the hybrid algorithm has a better optimization performance and it is feasible for hybrid algorithm to apply in the preliminary design of large vessels.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.253-255.2172</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2013-01, Vol.253-255, p.2172-2175
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1442729333
source eBook Academic Collection - Worldwide; Scientific.net Journals
title Optimization of Large Vessels Principal Parameters Based on Hybrid Particle Swarm Optimization Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A53%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Large%20Vessels%20Principal%20Parameters%20Based%20on%20Hybrid%20Particle%20Swarm%20Optimization%20Algorithm&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Hu,%20Yu%20Long&rft.date=2013-01-01&rft.volume=253-255&rft.spage=2172&rft.epage=2175&rft.pages=2172-2175&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783037855645&rft.isbn_list=3037855649&rft_id=info:doi/10.4028/www.scientific.net/AMM.253-255.2172&rft_dat=%3Cproquest_cross%3E3102265131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442729333&rft_id=info:pmid/&rfr_iscdi=true