Optimization of Large Vessels Principal Parameters Based on Hybrid Particle Swarm Optimization Algorithm
The multi-objective optimization design model of large vessels principal parameters was established, according to the characteristics of large ship’s scheme design. The ship stability, rapidity, and seakeeping were selected as the three objectives of the optimization model, and the minimum-deviation...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2013-01, Vol.253-255, p.2172-2175 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2175 |
---|---|
container_issue | |
container_start_page | 2172 |
container_title | Applied Mechanics and Materials |
container_volume | 253-255 |
creator | Hu, Yu Long Huang, Sheng Hou, Yuan Hang Wang, Wen Quan |
description | The multi-objective optimization design model of large vessels principal parameters was established, according to the characteristics of large ship’s scheme design. The ship stability, rapidity, and seakeeping were selected as the three objectives of the optimization model, and the minimum-deviation method was adopted to establish the unified objective function. The Particle Swarm Optimization and the Artificial Bee Colony algorithm were combined to the hybrid particle swarm algorithm, which then was used to solve the mathematical model. Through the simulation calculation, the results show that the hybrid algorithm has a better optimization performance and it is feasible for hybrid algorithm to apply in the preliminary design of large vessels. |
doi_str_mv | 10.4028/www.scientific.net/AMM.253-255.2172 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442729333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102265131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-921edeb29d08d3fcae15fe89394c7beee343bae591d802eba0269242242d061c3</originalsourceid><addsrcrecordid>eNqVkNlKAzEUhoMLWJd3CHgpM2ad5bKWukBLBZfbkMmcsZFZapJS9OlNraBeCudwLv6f78CH0AUlqSCsuNxsNqk3FvpgG2vSHsLleD5PmeQJkzJlNGd7aESzjCW5KNg-OivzghOeF1JmQh58ZSQpOc-O0LH3r4RkgopihJaLVbCd_dDBDj0eGjzT7gXwM3gPrcf3zvbGrnSL77XTHQRwHl9pDzWO9dv3ytl6GwVrWsAPG-06_Ic4bl8GZ8OyO0WHjW49nH3fE_R0PX2c3Cazxc3dZDxLDCcyJCWjUEPFypoUNW-MBiobKEpeCpNXAMAFrzTIktYFYVBpwrKSCRanJhk1_ASd77grN7ytwQf1OqxdH18qKgTLWZTAY2uyaxk3eO-gUStnO-3eFSVqq1xF5epHuYrKVVSuovK4Um2VR8p0RwlO9z6AWf569g_OJ6bpk78</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442729333</pqid></control><display><type>article</type><title>Optimization of Large Vessels Principal Parameters Based on Hybrid Particle Swarm Optimization Algorithm</title><source>eBook Academic Collection - Worldwide</source><source>Scientific.net Journals</source><creator>Hu, Yu Long ; Huang, Sheng ; Hou, Yuan Hang ; Wang, Wen Quan</creator><creatorcontrib>Hu, Yu Long ; Huang, Sheng ; Hou, Yuan Hang ; Wang, Wen Quan</creatorcontrib><description>The multi-objective optimization design model of large vessels principal parameters was established, according to the characteristics of large ship’s scheme design. The ship stability, rapidity, and seakeeping were selected as the three objectives of the optimization model, and the minimum-deviation method was adopted to establish the unified objective function. The Particle Swarm Optimization and the Artificial Bee Colony algorithm were combined to the hybrid particle swarm algorithm, which then was used to solve the mathematical model. Through the simulation calculation, the results show that the hybrid algorithm has a better optimization performance and it is feasible for hybrid algorithm to apply in the preliminary design of large vessels.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783037855645</identifier><identifier>ISBN: 3037855649</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.253-255.2172</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2013-01, Vol.253-255, p.2172-2175</ispartof><rights>2013 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Dec 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c305t-921edeb29d08d3fcae15fe89394c7beee343bae591d802eba0269242242d061c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2155?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hu, Yu Long</creatorcontrib><creatorcontrib>Huang, Sheng</creatorcontrib><creatorcontrib>Hou, Yuan Hang</creatorcontrib><creatorcontrib>Wang, Wen Quan</creatorcontrib><title>Optimization of Large Vessels Principal Parameters Based on Hybrid Particle Swarm Optimization Algorithm</title><title>Applied Mechanics and Materials</title><description>The multi-objective optimization design model of large vessels principal parameters was established, according to the characteristics of large ship’s scheme design. The ship stability, rapidity, and seakeeping were selected as the three objectives of the optimization model, and the minimum-deviation method was adopted to establish the unified objective function. The Particle Swarm Optimization and the Artificial Bee Colony algorithm were combined to the hybrid particle swarm algorithm, which then was used to solve the mathematical model. Through the simulation calculation, the results show that the hybrid algorithm has a better optimization performance and it is feasible for hybrid algorithm to apply in the preliminary design of large vessels.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783037855645</isbn><isbn>3037855649</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqVkNlKAzEUhoMLWJd3CHgpM2ad5bKWukBLBZfbkMmcsZFZapJS9OlNraBeCudwLv6f78CH0AUlqSCsuNxsNqk3FvpgG2vSHsLleD5PmeQJkzJlNGd7aESzjCW5KNg-OivzghOeF1JmQh58ZSQpOc-O0LH3r4RkgopihJaLVbCd_dDBDj0eGjzT7gXwM3gPrcf3zvbGrnSL77XTHQRwHl9pDzWO9dv3ytl6GwVrWsAPG-06_Ic4bl8GZ8OyO0WHjW49nH3fE_R0PX2c3Cazxc3dZDxLDCcyJCWjUEPFypoUNW-MBiobKEpeCpNXAMAFrzTIktYFYVBpwrKSCRanJhk1_ASd77grN7ytwQf1OqxdH18qKgTLWZTAY2uyaxk3eO-gUStnO-3eFSVqq1xF5epHuYrKVVSuovK4Um2VR8p0RwlO9z6AWf569g_OJ6bpk78</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Hu, Yu Long</creator><creator>Huang, Sheng</creator><creator>Hou, Yuan Hang</creator><creator>Wang, Wen Quan</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130101</creationdate><title>Optimization of Large Vessels Principal Parameters Based on Hybrid Particle Swarm Optimization Algorithm</title><author>Hu, Yu Long ; Huang, Sheng ; Hou, Yuan Hang ; Wang, Wen Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-921edeb29d08d3fcae15fe89394c7beee343bae591d802eba0269242242d061c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yu Long</creatorcontrib><creatorcontrib>Huang, Sheng</creatorcontrib><creatorcontrib>Hou, Yuan Hang</creatorcontrib><creatorcontrib>Wang, Wen Quan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yu Long</au><au>Huang, Sheng</au><au>Hou, Yuan Hang</au><au>Wang, Wen Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Large Vessels Principal Parameters Based on Hybrid Particle Swarm Optimization Algorithm</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>253-255</volume><spage>2172</spage><epage>2175</epage><pages>2172-2175</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783037855645</isbn><isbn>3037855649</isbn><abstract>The multi-objective optimization design model of large vessels principal parameters was established, according to the characteristics of large ship’s scheme design. The ship stability, rapidity, and seakeeping were selected as the three objectives of the optimization model, and the minimum-deviation method was adopted to establish the unified objective function. The Particle Swarm Optimization and the Artificial Bee Colony algorithm were combined to the hybrid particle swarm algorithm, which then was used to solve the mathematical model. Through the simulation calculation, the results show that the hybrid algorithm has a better optimization performance and it is feasible for hybrid algorithm to apply in the preliminary design of large vessels.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.253-255.2172</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2013-01, Vol.253-255, p.2172-2175 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_journals_1442729333 |
source | eBook Academic Collection - Worldwide; Scientific.net Journals |
title | Optimization of Large Vessels Principal Parameters Based on Hybrid Particle Swarm Optimization Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A53%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Large%20Vessels%20Principal%20Parameters%20Based%20on%20Hybrid%20Particle%20Swarm%20Optimization%20Algorithm&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Hu,%20Yu%20Long&rft.date=2013-01-01&rft.volume=253-255&rft.spage=2172&rft.epage=2175&rft.pages=2172-2175&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783037855645&rft.isbn_list=3037855649&rft_id=info:doi/10.4028/www.scientific.net/AMM.253-255.2172&rft_dat=%3Cproquest_cross%3E3102265131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442729333&rft_id=info:pmid/&rfr_iscdi=true |