Task Allocation of Multi-Robot Systems Based on a Novel Explosive Immune Evolutionary Algorithm
To solve the task allocation of multi-robot systems, a novel explosive evolution - based immune genetic algorithm (EIGA) is presented. On the basis of the immune genetic algorithm (IGA), the population number of EIGA is increased quickly through explosive evolutionary mode, and then the better indiv...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2012-12, Vol.246-247, p.331-335 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 335 |
---|---|
container_issue | |
container_start_page | 331 |
container_title | Applied Mechanics and Materials |
container_volume | 246-247 |
creator | Ye, Zhao Li Wang, Qi Jiang, Ya Feng Shen, Yi Yuan, Ming Xin |
description | To solve the task allocation of multi-robot systems, a novel explosive evolution - based immune genetic algorithm (EIGA) is presented. On the basis of the immune genetic algorithm (IGA), the population number of EIGA is increased quickly through explosive evolutionary mode, and then the better individuals are selected through the comparison of allelic genes, which can improve the population quality with the premise of ensuring the population diversity, and enhance the search speed and search precision of EIGA. Compared with the IGA and genetic algorithm (GA), the simulation results indicate that the proposed EIGA is characterized by quick convergence speed, high optimization precision and good stability, and the tasks are allocated rationally and scientifi-cally which realizes the task cooperation of multi-robot systems well. |
doi_str_mv | 10.4028/www.scientific.net/AMM.246-247.331 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442646144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102045861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3241-f560f1f8e8c596da5e207a4c9cc2e243489620b25f58800c85a0a9b96944ab133</originalsourceid><addsrcrecordid>eNqNkF1PwjAUhhs_EgH9D028M9no17ruEhCVBDRRvG5K6WS4rbh2IP_eIiZ66cXJuXhPnvfkAeAGo5ghIvq73S52ujC1L_JCx7Xx_cFsFhPGI8LSmFJ8AjqYcxKlTJBT0KWIpiJJGMJn3wGKMkr5Beg6t0aIM8xEB8i5cu9wUJZWK1_YGtocztrSF9GzXVgPX_bOm8rBoXJmCUOu4KPdmhKOPzeldcXWwElVtbWB460t2wNCNfsAfLNN4VfVJTjPVenM1c_ugde78Xz0EE2f7iejwTTSlDAc5QlHOc6FETrJ-FIlhqBUMZ1pTQxhlImME7QgSZ4IgZAWiUIqW2Q8Y0wtMKU9cH3kbhr70Rrn5dq2TR0qJWaMcMbDClfD45VurHONyeWmKarwsMRIHizLYFn-WpbBsgyWZbAcJpXBcoDcHiG-UXWwo1d_uv6P-QJde42B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442646144</pqid></control><display><type>article</type><title>Task Allocation of Multi-Robot Systems Based on a Novel Explosive Immune Evolutionary Algorithm</title><source>Scientific.net Journals</source><creator>Ye, Zhao Li ; Wang, Qi ; Jiang, Ya Feng ; Shen, Yi ; Yuan, Ming Xin</creator><creatorcontrib>Ye, Zhao Li ; Wang, Qi ; Jiang, Ya Feng ; Shen, Yi ; Yuan, Ming Xin</creatorcontrib><description>To solve the task allocation of multi-robot systems, a novel explosive evolution - based immune genetic algorithm (EIGA) is presented. On the basis of the immune genetic algorithm (IGA), the population number of EIGA is increased quickly through explosive evolutionary mode, and then the better individuals are selected through the comparison of allelic genes, which can improve the population quality with the premise of ensuring the population diversity, and enhance the search speed and search precision of EIGA. Compared with the IGA and genetic algorithm (GA), the simulation results indicate that the proposed EIGA is characterized by quick convergence speed, high optimization precision and good stability, and the tasks are allocated rationally and scientifi-cally which realizes the task cooperation of multi-robot systems well.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3037855401</identifier><identifier>ISBN: 9783037855409</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.246-247.331</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2012-12, Vol.246-247, p.331-335</ispartof><rights>2013 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Dec 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3241-f560f1f8e8c596da5e207a4c9cc2e243489620b25f58800c85a0a9b96944ab133</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2095?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ye, Zhao Li</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Jiang, Ya Feng</creatorcontrib><creatorcontrib>Shen, Yi</creatorcontrib><creatorcontrib>Yuan, Ming Xin</creatorcontrib><title>Task Allocation of Multi-Robot Systems Based on a Novel Explosive Immune Evolutionary Algorithm</title><title>Applied Mechanics and Materials</title><description>To solve the task allocation of multi-robot systems, a novel explosive evolution - based immune genetic algorithm (EIGA) is presented. On the basis of the immune genetic algorithm (IGA), the population number of EIGA is increased quickly through explosive evolutionary mode, and then the better individuals are selected through the comparison of allelic genes, which can improve the population quality with the premise of ensuring the population diversity, and enhance the search speed and search precision of EIGA. Compared with the IGA and genetic algorithm (GA), the simulation results indicate that the proposed EIGA is characterized by quick convergence speed, high optimization precision and good stability, and the tasks are allocated rationally and scientifi-cally which realizes the task cooperation of multi-robot systems well.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3037855401</isbn><isbn>9783037855409</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkF1PwjAUhhs_EgH9D028M9no17ruEhCVBDRRvG5K6WS4rbh2IP_eIiZ66cXJuXhPnvfkAeAGo5ghIvq73S52ujC1L_JCx7Xx_cFsFhPGI8LSmFJ8AjqYcxKlTJBT0KWIpiJJGMJn3wGKMkr5Beg6t0aIM8xEB8i5cu9wUJZWK1_YGtocztrSF9GzXVgPX_bOm8rBoXJmCUOu4KPdmhKOPzeldcXWwElVtbWB460t2wNCNfsAfLNN4VfVJTjPVenM1c_ugde78Xz0EE2f7iejwTTSlDAc5QlHOc6FETrJ-FIlhqBUMZ1pTQxhlImME7QgSZ4IgZAWiUIqW2Q8Y0wtMKU9cH3kbhr70Rrn5dq2TR0qJWaMcMbDClfD45VurHONyeWmKarwsMRIHizLYFn-WpbBsgyWZbAcJpXBcoDcHiG-UXWwo1d_uv6P-QJde42B</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Ye, Zhao Li</creator><creator>Wang, Qi</creator><creator>Jiang, Ya Feng</creator><creator>Shen, Yi</creator><creator>Yuan, Ming Xin</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20121201</creationdate><title>Task Allocation of Multi-Robot Systems Based on a Novel Explosive Immune Evolutionary Algorithm</title><author>Ye, Zhao Li ; Wang, Qi ; Jiang, Ya Feng ; Shen, Yi ; Yuan, Ming Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3241-f560f1f8e8c596da5e207a4c9cc2e243489620b25f58800c85a0a9b96944ab133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Zhao Li</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Jiang, Ya Feng</creatorcontrib><creatorcontrib>Shen, Yi</creatorcontrib><creatorcontrib>Yuan, Ming Xin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Zhao Li</au><au>Wang, Qi</au><au>Jiang, Ya Feng</au><au>Shen, Yi</au><au>Yuan, Ming Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Task Allocation of Multi-Robot Systems Based on a Novel Explosive Immune Evolutionary Algorithm</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2012-12-01</date><risdate>2012</risdate><volume>246-247</volume><spage>331</spage><epage>335</epage><pages>331-335</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3037855401</isbn><isbn>9783037855409</isbn><abstract>To solve the task allocation of multi-robot systems, a novel explosive evolution - based immune genetic algorithm (EIGA) is presented. On the basis of the immune genetic algorithm (IGA), the population number of EIGA is increased quickly through explosive evolutionary mode, and then the better individuals are selected through the comparison of allelic genes, which can improve the population quality with the premise of ensuring the population diversity, and enhance the search speed and search precision of EIGA. Compared with the IGA and genetic algorithm (GA), the simulation results indicate that the proposed EIGA is characterized by quick convergence speed, high optimization precision and good stability, and the tasks are allocated rationally and scientifi-cally which realizes the task cooperation of multi-robot systems well.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.246-247.331</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2012-12, Vol.246-247, p.331-335 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_journals_1442646144 |
source | Scientific.net Journals |
title | Task Allocation of Multi-Robot Systems Based on a Novel Explosive Immune Evolutionary Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A44%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Task%20Allocation%20of%20Multi-Robot%20Systems%20Based%20on%20a%20Novel%20Explosive%20Immune%20Evolutionary%20Algorithm&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Ye,%20Zhao%20Li&rft.date=2012-12-01&rft.volume=246-247&rft.spage=331&rft.epage=335&rft.pages=331-335&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3037855401&rft.isbn_list=9783037855409&rft_id=info:doi/10.4028/www.scientific.net/AMM.246-247.331&rft_dat=%3Cproquest_cross%3E3102045861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442646144&rft_id=info:pmid/&rfr_iscdi=true |