Task Allocation of Multi-Robot Systems Based on a Novel Explosive Immune Evolutionary Algorithm

To solve the task allocation of multi-robot systems, a novel explosive evolution - based immune genetic algorithm (EIGA) is presented. On the basis of the immune genetic algorithm (IGA), the population number of EIGA is increased quickly through explosive evolutionary mode, and then the better indiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2012-12, Vol.246-247, p.331-335
Hauptverfasser: Ye, Zhao Li, Wang, Qi, Jiang, Ya Feng, Shen, Yi, Yuan, Ming Xin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 335
container_issue
container_start_page 331
container_title Applied Mechanics and Materials
container_volume 246-247
creator Ye, Zhao Li
Wang, Qi
Jiang, Ya Feng
Shen, Yi
Yuan, Ming Xin
description To solve the task allocation of multi-robot systems, a novel explosive evolution - based immune genetic algorithm (EIGA) is presented. On the basis of the immune genetic algorithm (IGA), the population number of EIGA is increased quickly through explosive evolutionary mode, and then the better individuals are selected through the comparison of allelic genes, which can improve the population quality with the premise of ensuring the population diversity, and enhance the search speed and search precision of EIGA. Compared with the IGA and genetic algorithm (GA), the simulation results indicate that the proposed EIGA is characterized by quick convergence speed, high optimization precision and good stability, and the tasks are allocated rationally and scientifi-cally which realizes the task cooperation of multi-robot systems well.
doi_str_mv 10.4028/www.scientific.net/AMM.246-247.331
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442646144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102045861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3241-f560f1f8e8c596da5e207a4c9cc2e243489620b25f58800c85a0a9b96944ab133</originalsourceid><addsrcrecordid>eNqNkF1PwjAUhhs_EgH9D028M9no17ruEhCVBDRRvG5K6WS4rbh2IP_eIiZ66cXJuXhPnvfkAeAGo5ghIvq73S52ujC1L_JCx7Xx_cFsFhPGI8LSmFJ8AjqYcxKlTJBT0KWIpiJJGMJn3wGKMkr5Beg6t0aIM8xEB8i5cu9wUJZWK1_YGtocztrSF9GzXVgPX_bOm8rBoXJmCUOu4KPdmhKOPzeldcXWwElVtbWB460t2wNCNfsAfLNN4VfVJTjPVenM1c_ugde78Xz0EE2f7iejwTTSlDAc5QlHOc6FETrJ-FIlhqBUMZ1pTQxhlImME7QgSZ4IgZAWiUIqW2Q8Y0wtMKU9cH3kbhr70Rrn5dq2TR0qJWaMcMbDClfD45VurHONyeWmKarwsMRIHizLYFn-WpbBsgyWZbAcJpXBcoDcHiG-UXWwo1d_uv6P-QJde42B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442646144</pqid></control><display><type>article</type><title>Task Allocation of Multi-Robot Systems Based on a Novel Explosive Immune Evolutionary Algorithm</title><source>Scientific.net Journals</source><creator>Ye, Zhao Li ; Wang, Qi ; Jiang, Ya Feng ; Shen, Yi ; Yuan, Ming Xin</creator><creatorcontrib>Ye, Zhao Li ; Wang, Qi ; Jiang, Ya Feng ; Shen, Yi ; Yuan, Ming Xin</creatorcontrib><description>To solve the task allocation of multi-robot systems, a novel explosive evolution - based immune genetic algorithm (EIGA) is presented. On the basis of the immune genetic algorithm (IGA), the population number of EIGA is increased quickly through explosive evolutionary mode, and then the better individuals are selected through the comparison of allelic genes, which can improve the population quality with the premise of ensuring the population diversity, and enhance the search speed and search precision of EIGA. Compared with the IGA and genetic algorithm (GA), the simulation results indicate that the proposed EIGA is characterized by quick convergence speed, high optimization precision and good stability, and the tasks are allocated rationally and scientifi-cally which realizes the task cooperation of multi-robot systems well.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3037855401</identifier><identifier>ISBN: 9783037855409</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.246-247.331</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2012-12, Vol.246-247, p.331-335</ispartof><rights>2013 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Dec 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3241-f560f1f8e8c596da5e207a4c9cc2e243489620b25f58800c85a0a9b96944ab133</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2095?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ye, Zhao Li</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Jiang, Ya Feng</creatorcontrib><creatorcontrib>Shen, Yi</creatorcontrib><creatorcontrib>Yuan, Ming Xin</creatorcontrib><title>Task Allocation of Multi-Robot Systems Based on a Novel Explosive Immune Evolutionary Algorithm</title><title>Applied Mechanics and Materials</title><description>To solve the task allocation of multi-robot systems, a novel explosive evolution - based immune genetic algorithm (EIGA) is presented. On the basis of the immune genetic algorithm (IGA), the population number of EIGA is increased quickly through explosive evolutionary mode, and then the better individuals are selected through the comparison of allelic genes, which can improve the population quality with the premise of ensuring the population diversity, and enhance the search speed and search precision of EIGA. Compared with the IGA and genetic algorithm (GA), the simulation results indicate that the proposed EIGA is characterized by quick convergence speed, high optimization precision and good stability, and the tasks are allocated rationally and scientifi-cally which realizes the task cooperation of multi-robot systems well.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3037855401</isbn><isbn>9783037855409</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkF1PwjAUhhs_EgH9D028M9no17ruEhCVBDRRvG5K6WS4rbh2IP_eIiZ66cXJuXhPnvfkAeAGo5ghIvq73S52ujC1L_JCx7Xx_cFsFhPGI8LSmFJ8AjqYcxKlTJBT0KWIpiJJGMJn3wGKMkr5Beg6t0aIM8xEB8i5cu9wUJZWK1_YGtocztrSF9GzXVgPX_bOm8rBoXJmCUOu4KPdmhKOPzeldcXWwElVtbWB460t2wNCNfsAfLNN4VfVJTjPVenM1c_ugde78Xz0EE2f7iejwTTSlDAc5QlHOc6FETrJ-FIlhqBUMZ1pTQxhlImME7QgSZ4IgZAWiUIqW2Q8Y0wtMKU9cH3kbhr70Rrn5dq2TR0qJWaMcMbDClfD45VurHONyeWmKarwsMRIHizLYFn-WpbBsgyWZbAcJpXBcoDcHiG-UXWwo1d_uv6P-QJde42B</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Ye, Zhao Li</creator><creator>Wang, Qi</creator><creator>Jiang, Ya Feng</creator><creator>Shen, Yi</creator><creator>Yuan, Ming Xin</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20121201</creationdate><title>Task Allocation of Multi-Robot Systems Based on a Novel Explosive Immune Evolutionary Algorithm</title><author>Ye, Zhao Li ; Wang, Qi ; Jiang, Ya Feng ; Shen, Yi ; Yuan, Ming Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3241-f560f1f8e8c596da5e207a4c9cc2e243489620b25f58800c85a0a9b96944ab133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Zhao Li</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Jiang, Ya Feng</creatorcontrib><creatorcontrib>Shen, Yi</creatorcontrib><creatorcontrib>Yuan, Ming Xin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Zhao Li</au><au>Wang, Qi</au><au>Jiang, Ya Feng</au><au>Shen, Yi</au><au>Yuan, Ming Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Task Allocation of Multi-Robot Systems Based on a Novel Explosive Immune Evolutionary Algorithm</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2012-12-01</date><risdate>2012</risdate><volume>246-247</volume><spage>331</spage><epage>335</epage><pages>331-335</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3037855401</isbn><isbn>9783037855409</isbn><abstract>To solve the task allocation of multi-robot systems, a novel explosive evolution - based immune genetic algorithm (EIGA) is presented. On the basis of the immune genetic algorithm (IGA), the population number of EIGA is increased quickly through explosive evolutionary mode, and then the better individuals are selected through the comparison of allelic genes, which can improve the population quality with the premise of ensuring the population diversity, and enhance the search speed and search precision of EIGA. Compared with the IGA and genetic algorithm (GA), the simulation results indicate that the proposed EIGA is characterized by quick convergence speed, high optimization precision and good stability, and the tasks are allocated rationally and scientifi-cally which realizes the task cooperation of multi-robot systems well.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.246-247.331</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2012-12, Vol.246-247, p.331-335
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1442646144
source Scientific.net Journals
title Task Allocation of Multi-Robot Systems Based on a Novel Explosive Immune Evolutionary Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A44%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Task%20Allocation%20of%20Multi-Robot%20Systems%20Based%20on%20a%20Novel%20Explosive%20Immune%20Evolutionary%20Algorithm&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Ye,%20Zhao%20Li&rft.date=2012-12-01&rft.volume=246-247&rft.spage=331&rft.epage=335&rft.pages=331-335&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3037855401&rft.isbn_list=9783037855409&rft_id=info:doi/10.4028/www.scientific.net/AMM.246-247.331&rft_dat=%3Cproquest_cross%3E3102045861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442646144&rft_id=info:pmid/&rfr_iscdi=true