An Image Fusion Assessment Metric Based on Multi-Scale Structure Similarity
Considering the fact that the human visual system is not only highly adapted for extracting structural features such as lines, edges, contours from the input images, but also has characteristics of multi-channel (multi-scale) information processing, An image fusion assessment metric based on multi-s...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2012-11, Vol.215-216, p.674-678 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 678 |
---|---|
container_issue | |
container_start_page | 674 |
container_title | Applied Mechanics and Materials |
container_volume | 215-216 |
creator | Xiao, Zhang Shu |
description | Considering the fact that the human visual system is not only highly adapted for extracting structural features such as lines, edges, contours from the input images, but also has characteristics of multi-channel (multi-scale) information processing, An image fusion assessment metric based on multi-scale structure similarity is proposed. Compared with the single-scale assessment metrics, the proposed metric provides more flexibility on account of considering the variations of viewing conditions and has better consistence with human perceptions. Visual experiments and quantitative analysis confirm its effectiveness, and the statistical results of image fusion demonstrate its promising applications. |
doi_str_mv | 10.4028/www.scientific.net/AMM.215-216.674 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442623899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101898381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-de0c535443ebcab2206b52a0ad03985c3e93609f541c5ccf6124b0e2026303793</originalsourceid><addsrcrecordid>eNqNkEtPAjEUhRsfiYD-h0ncmcxw-2RmCShKZOICXTed0tGSYcC2E8K_t4iJLl3c3Juck3NyP4TuMGQMSD7c7_eZ19a0wdZWZ60Jw3FZZgTzlGCRiRE7Qz0sBElHLCfnqE-BjnLOAcPFtwBpQam4Qn3v1wCCYZb30PO4TeYb9W6SWefttk3G3hvvN7EmKU1wVicT5c0qiVLZNcGmS60akyyD63ToXLzsxjbK2XC4Rpe1ary5-dkD9DZ7eJ0-pYuXx_l0vEg1FXlIVwY0p5wxaiqtKkJAVJwoUCugRc41NQUVUNScYc21rgUmrAJDgIjjSwUdoNtT7s5tPzvjg1xvO9fGSokZI4LQvDi6JieXdlvvnanlztmNcgeJQR6JykhU_hKVkaiMRGUkGkfISDSG3J9CglOtD0Z__On6f8wX3cmF9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442623899</pqid></control><display><type>article</type><title>An Image Fusion Assessment Metric Based on Multi-Scale Structure Similarity</title><source>Scientific.net Journals</source><creator>Xiao, Zhang Shu</creator><creatorcontrib>Xiao, Zhang Shu</creatorcontrib><description>Considering the fact that the human visual system is not only highly adapted for extracting structural features such as lines, edges, contours from the input images, but also has characteristics of multi-channel (multi-scale) information processing, An image fusion assessment metric based on multi-scale structure similarity is proposed. Compared with the single-scale assessment metrics, the proposed metric provides more flexibility on account of considering the variations of viewing conditions and has better consistence with human perceptions. Visual experiments and quantitative analysis confirm its effectiveness, and the statistical results of image fusion demonstrate its promising applications.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3037855010</identifier><identifier>ISBN: 9783037855010</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.215-216.674</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2012-11, Vol.215-216, p.674-678</ispartof><rights>2012 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Nov 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-de0c535443ebcab2206b52a0ad03985c3e93609f541c5ccf6124b0e2026303793</citedby><cites>FETCH-LOGICAL-c368t-de0c535443ebcab2206b52a0ad03985c3e93609f541c5ccf6124b0e2026303793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2023?width=600</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Xiao, Zhang Shu</creatorcontrib><title>An Image Fusion Assessment Metric Based on Multi-Scale Structure Similarity</title><title>Applied Mechanics and Materials</title><description>Considering the fact that the human visual system is not only highly adapted for extracting structural features such as lines, edges, contours from the input images, but also has characteristics of multi-channel (multi-scale) information processing, An image fusion assessment metric based on multi-scale structure similarity is proposed. Compared with the single-scale assessment metrics, the proposed metric provides more flexibility on account of considering the variations of viewing conditions and has better consistence with human perceptions. Visual experiments and quantitative analysis confirm its effectiveness, and the statistical results of image fusion demonstrate its promising applications.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3037855010</isbn><isbn>9783037855010</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkEtPAjEUhRsfiYD-h0ncmcxw-2RmCShKZOICXTed0tGSYcC2E8K_t4iJLl3c3Juck3NyP4TuMGQMSD7c7_eZ19a0wdZWZ60Jw3FZZgTzlGCRiRE7Qz0sBElHLCfnqE-BjnLOAcPFtwBpQam4Qn3v1wCCYZb30PO4TeYb9W6SWefttk3G3hvvN7EmKU1wVicT5c0qiVLZNcGmS60akyyD63ToXLzsxjbK2XC4Rpe1ary5-dkD9DZ7eJ0-pYuXx_l0vEg1FXlIVwY0p5wxaiqtKkJAVJwoUCugRc41NQUVUNScYc21rgUmrAJDgIjjSwUdoNtT7s5tPzvjg1xvO9fGSokZI4LQvDi6JieXdlvvnanlztmNcgeJQR6JykhU_hKVkaiMRGUkGkfISDSG3J9CglOtD0Z__On6f8wX3cmF9g</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Xiao, Zhang Shu</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20121101</creationdate><title>An Image Fusion Assessment Metric Based on Multi-Scale Structure Similarity</title><author>Xiao, Zhang Shu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-de0c535443ebcab2206b52a0ad03985c3e93609f541c5ccf6124b0e2026303793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Zhang Shu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Zhang Shu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Image Fusion Assessment Metric Based on Multi-Scale Structure Similarity</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>215-216</volume><spage>674</spage><epage>678</epage><pages>674-678</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3037855010</isbn><isbn>9783037855010</isbn><abstract>Considering the fact that the human visual system is not only highly adapted for extracting structural features such as lines, edges, contours from the input images, but also has characteristics of multi-channel (multi-scale) information processing, An image fusion assessment metric based on multi-scale structure similarity is proposed. Compared with the single-scale assessment metrics, the proposed metric provides more flexibility on account of considering the variations of viewing conditions and has better consistence with human perceptions. Visual experiments and quantitative analysis confirm its effectiveness, and the statistical results of image fusion demonstrate its promising applications.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.215-216.674</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2012-11, Vol.215-216, p.674-678 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_journals_1442623899 |
source | Scientific.net Journals |
title | An Image Fusion Assessment Metric Based on Multi-Scale Structure Similarity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A18%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Image%20Fusion%20Assessment%20Metric%20Based%20on%20Multi-Scale%20Structure%20Similarity&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Xiao,%20Zhang%20Shu&rft.date=2012-11-01&rft.volume=215-216&rft.spage=674&rft.epage=678&rft.pages=674-678&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3037855010&rft.isbn_list=9783037855010&rft_id=info:doi/10.4028/www.scientific.net/AMM.215-216.674&rft_dat=%3Cproquest_cross%3E3101898381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442623899&rft_id=info:pmid/&rfr_iscdi=true |