An Image Fusion Assessment Metric Based on Multi-Scale Structure Similarity

Considering the fact that the human visual system is not only highly adapted for extracting structural features such as lines, edges, contours from the input images, but also has characteristics of multi-channel (multi-scale) information processing, An image fusion assessment metric based on multi-s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2012-11, Vol.215-216, p.674-678
1. Verfasser: Xiao, Zhang Shu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 678
container_issue
container_start_page 674
container_title Applied Mechanics and Materials
container_volume 215-216
creator Xiao, Zhang Shu
description Considering the fact that the human visual system is not only highly adapted for extracting structural features such as lines, edges, contours from the input images, but also has characteristics of multi-channel (multi-scale) information processing, An image fusion assessment metric based on multi-scale structure similarity is proposed. Compared with the single-scale assessment metrics, the proposed metric provides more flexibility on account of considering the variations of viewing conditions and has better consistence with human perceptions. Visual experiments and quantitative analysis confirm its effectiveness, and the statistical results of image fusion demonstrate its promising applications.
doi_str_mv 10.4028/www.scientific.net/AMM.215-216.674
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442623899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101898381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-de0c535443ebcab2206b52a0ad03985c3e93609f541c5ccf6124b0e2026303793</originalsourceid><addsrcrecordid>eNqNkEtPAjEUhRsfiYD-h0ncmcxw-2RmCShKZOICXTed0tGSYcC2E8K_t4iJLl3c3Juck3NyP4TuMGQMSD7c7_eZ19a0wdZWZ60Jw3FZZgTzlGCRiRE7Qz0sBElHLCfnqE-BjnLOAcPFtwBpQam4Qn3v1wCCYZb30PO4TeYb9W6SWefttk3G3hvvN7EmKU1wVicT5c0qiVLZNcGmS60akyyD63ToXLzsxjbK2XC4Rpe1ary5-dkD9DZ7eJ0-pYuXx_l0vEg1FXlIVwY0p5wxaiqtKkJAVJwoUCugRc41NQUVUNScYc21rgUmrAJDgIjjSwUdoNtT7s5tPzvjg1xvO9fGSokZI4LQvDi6JieXdlvvnanlztmNcgeJQR6JykhU_hKVkaiMRGUkGkfISDSG3J9CglOtD0Z__On6f8wX3cmF9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442623899</pqid></control><display><type>article</type><title>An Image Fusion Assessment Metric Based on Multi-Scale Structure Similarity</title><source>Scientific.net Journals</source><creator>Xiao, Zhang Shu</creator><creatorcontrib>Xiao, Zhang Shu</creatorcontrib><description>Considering the fact that the human visual system is not only highly adapted for extracting structural features such as lines, edges, contours from the input images, but also has characteristics of multi-channel (multi-scale) information processing, An image fusion assessment metric based on multi-scale structure similarity is proposed. Compared with the single-scale assessment metrics, the proposed metric provides more flexibility on account of considering the variations of viewing conditions and has better consistence with human perceptions. Visual experiments and quantitative analysis confirm its effectiveness, and the statistical results of image fusion demonstrate its promising applications.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3037855010</identifier><identifier>ISBN: 9783037855010</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.215-216.674</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2012-11, Vol.215-216, p.674-678</ispartof><rights>2012 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Nov 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-de0c535443ebcab2206b52a0ad03985c3e93609f541c5ccf6124b0e2026303793</citedby><cites>FETCH-LOGICAL-c368t-de0c535443ebcab2206b52a0ad03985c3e93609f541c5ccf6124b0e2026303793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2023?width=600</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Xiao, Zhang Shu</creatorcontrib><title>An Image Fusion Assessment Metric Based on Multi-Scale Structure Similarity</title><title>Applied Mechanics and Materials</title><description>Considering the fact that the human visual system is not only highly adapted for extracting structural features such as lines, edges, contours from the input images, but also has characteristics of multi-channel (multi-scale) information processing, An image fusion assessment metric based on multi-scale structure similarity is proposed. Compared with the single-scale assessment metrics, the proposed metric provides more flexibility on account of considering the variations of viewing conditions and has better consistence with human perceptions. Visual experiments and quantitative analysis confirm its effectiveness, and the statistical results of image fusion demonstrate its promising applications.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3037855010</isbn><isbn>9783037855010</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkEtPAjEUhRsfiYD-h0ncmcxw-2RmCShKZOICXTed0tGSYcC2E8K_t4iJLl3c3Juck3NyP4TuMGQMSD7c7_eZ19a0wdZWZ60Jw3FZZgTzlGCRiRE7Qz0sBElHLCfnqE-BjnLOAcPFtwBpQam4Qn3v1wCCYZb30PO4TeYb9W6SWefttk3G3hvvN7EmKU1wVicT5c0qiVLZNcGmS60akyyD63ToXLzsxjbK2XC4Rpe1ary5-dkD9DZ7eJ0-pYuXx_l0vEg1FXlIVwY0p5wxaiqtKkJAVJwoUCugRc41NQUVUNScYc21rgUmrAJDgIjjSwUdoNtT7s5tPzvjg1xvO9fGSokZI4LQvDi6JieXdlvvnanlztmNcgeJQR6JykhU_hKVkaiMRGUkGkfISDSG3J9CglOtD0Z__On6f8wX3cmF9g</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Xiao, Zhang Shu</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20121101</creationdate><title>An Image Fusion Assessment Metric Based on Multi-Scale Structure Similarity</title><author>Xiao, Zhang Shu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-de0c535443ebcab2206b52a0ad03985c3e93609f541c5ccf6124b0e2026303793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Zhang Shu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Zhang Shu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Image Fusion Assessment Metric Based on Multi-Scale Structure Similarity</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>215-216</volume><spage>674</spage><epage>678</epage><pages>674-678</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3037855010</isbn><isbn>9783037855010</isbn><abstract>Considering the fact that the human visual system is not only highly adapted for extracting structural features such as lines, edges, contours from the input images, but also has characteristics of multi-channel (multi-scale) information processing, An image fusion assessment metric based on multi-scale structure similarity is proposed. Compared with the single-scale assessment metrics, the proposed metric provides more flexibility on account of considering the variations of viewing conditions and has better consistence with human perceptions. Visual experiments and quantitative analysis confirm its effectiveness, and the statistical results of image fusion demonstrate its promising applications.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.215-216.674</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2012-11, Vol.215-216, p.674-678
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1442623899
source Scientific.net Journals
title An Image Fusion Assessment Metric Based on Multi-Scale Structure Similarity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A18%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Image%20Fusion%20Assessment%20Metric%20Based%20on%20Multi-Scale%20Structure%20Similarity&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Xiao,%20Zhang%20Shu&rft.date=2012-11-01&rft.volume=215-216&rft.spage=674&rft.epage=678&rft.pages=674-678&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3037855010&rft.isbn_list=9783037855010&rft_id=info:doi/10.4028/www.scientific.net/AMM.215-216.674&rft_dat=%3Cproquest_cross%3E3101898381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442623899&rft_id=info:pmid/&rfr_iscdi=true