Three-Dimensional Two Material Transportation Method Based on the Volume Fractions Interface Algorithm
In order to solve the problem of three-dimensional two medium transportation problems of fluid dynamics, the transportation principles of a metal ball moving in constant velocity fields were given. The space district was dispersed into some cuboid Euler cells in the directions of three coordinate ax...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2012-11, Vol.238, p.218-222 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 222 |
---|---|
container_issue | |
container_start_page | 218 |
container_title | Applied Mechanics and Materials |
container_volume | 238 |
creator | Tong, Yu Ping Wu, Ze Yu Wu, Ji Lin Du, Pei Rong |
description | In order to solve the problem of three-dimensional two medium transportation problems of fluid dynamics, the transportation principles of a metal ball moving in constant velocity fields were given. The space district was dispersed into some cuboid Euler cells in the directions of three coordinate axes, along which mediums were transported by turns. The continuous boundary condition was adopted to simulate infinite boundary. The interface reconstruction method in the mixture cells was the volume fractions method. The numerical simulation result indicates that the shape and size of the medium cuboid can keep unchanged basically during the medium transportation. The overspeed transportation problem of the volume fractions method in the course of transportation is pointed out. The research may provide certain reference and guidance for solving the multi-material fluid dynamics problems. |
doi_str_mv | 10.4028/www.scientific.net/AMM.238.218 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442601367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101794121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-d8e46d4c4a663ac020a04edbb664354016f2efd8be1caac2113f1f121eb166b83</originalsourceid><addsrcrecordid>eNqNkEtLAzEUhYMPsD7-Q0BwN9O8mqYbsdZXweKmug2ZzI0zpZ3UJKX4702toEtXl8M991zOh9AVJaUgTPW3220ZbQtdal1ryw5SfzyblYyrklF1gHpUSlYMhWKH6GI0VJzwoRoMuFBH3ztSjDiXJ-g0xgUhUlChesjNmwBQ3LUr6GLrO7PE863HM5MgtDsRTBfXPiST8hbPIDW-xrcmQo2zTg3gN7_crAA_BGN3noinXT52xgIeL999aFOzOkfHziwjXPzMM_T6cD-fPBXPL4_Tyfi5sGw0SEWtQMhaWGGk5MYSRgwRUFeVlIIPBKHSMXC1qoBaYyyjlDvqKKNQ5YKV4mfocp-7Dv5jAzHphd-E3CpqKgSThHI5zK7rvcsGH2MAp9ehXZnwqSnRO9Y6s9a_rHVmrTNrnVnrzDoH3OwD0g5PAtv8-fO_iC-jGo-L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442601367</pqid></control><display><type>article</type><title>Three-Dimensional Two Material Transportation Method Based on the Volume Fractions Interface Algorithm</title><source>Scientific.net Journals</source><creator>Tong, Yu Ping ; Wu, Ze Yu ; Wu, Ji Lin ; Du, Pei Rong</creator><creatorcontrib>Tong, Yu Ping ; Wu, Ze Yu ; Wu, Ji Lin ; Du, Pei Rong</creatorcontrib><description>In order to solve the problem of three-dimensional two medium transportation problems of fluid dynamics, the transportation principles of a metal ball moving in constant velocity fields were given. The space district was dispersed into some cuboid Euler cells in the directions of three coordinate axes, along which mediums were transported by turns. The continuous boundary condition was adopted to simulate infinite boundary. The interface reconstruction method in the mixture cells was the volume fractions method. The numerical simulation result indicates that the shape and size of the medium cuboid can keep unchanged basically during the medium transportation. The overspeed transportation problem of the volume fractions method in the course of transportation is pointed out. The research may provide certain reference and guidance for solving the multi-material fluid dynamics problems.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783037855348</identifier><identifier>ISBN: 3037855347</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.238.218</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2012-11, Vol.238, p.218-222</ispartof><rights>2012 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Nov 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c295t-d8e46d4c4a663ac020a04edbb664354016f2efd8be1caac2113f1f121eb166b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2080?width=600</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Tong, Yu Ping</creatorcontrib><creatorcontrib>Wu, Ze Yu</creatorcontrib><creatorcontrib>Wu, Ji Lin</creatorcontrib><creatorcontrib>Du, Pei Rong</creatorcontrib><title>Three-Dimensional Two Material Transportation Method Based on the Volume Fractions Interface Algorithm</title><title>Applied Mechanics and Materials</title><description>In order to solve the problem of three-dimensional two medium transportation problems of fluid dynamics, the transportation principles of a metal ball moving in constant velocity fields were given. The space district was dispersed into some cuboid Euler cells in the directions of three coordinate axes, along which mediums were transported by turns. The continuous boundary condition was adopted to simulate infinite boundary. The interface reconstruction method in the mixture cells was the volume fractions method. The numerical simulation result indicates that the shape and size of the medium cuboid can keep unchanged basically during the medium transportation. The overspeed transportation problem of the volume fractions method in the course of transportation is pointed out. The research may provide certain reference and guidance for solving the multi-material fluid dynamics problems.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783037855348</isbn><isbn>3037855347</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkEtLAzEUhYMPsD7-Q0BwN9O8mqYbsdZXweKmug2ZzI0zpZ3UJKX4702toEtXl8M991zOh9AVJaUgTPW3220ZbQtdal1ryw5SfzyblYyrklF1gHpUSlYMhWKH6GI0VJzwoRoMuFBH3ztSjDiXJ-g0xgUhUlChesjNmwBQ3LUr6GLrO7PE863HM5MgtDsRTBfXPiST8hbPIDW-xrcmQo2zTg3gN7_crAA_BGN3noinXT52xgIeL999aFOzOkfHziwjXPzMM_T6cD-fPBXPL4_Tyfi5sGw0SEWtQMhaWGGk5MYSRgwRUFeVlIIPBKHSMXC1qoBaYyyjlDvqKKNQ5YKV4mfocp-7Dv5jAzHphd-E3CpqKgSThHI5zK7rvcsGH2MAp9ehXZnwqSnRO9Y6s9a_rHVmrTNrnVnrzDoH3OwD0g5PAtv8-fO_iC-jGo-L</recordid><startdate>20121129</startdate><enddate>20121129</enddate><creator>Tong, Yu Ping</creator><creator>Wu, Ze Yu</creator><creator>Wu, Ji Lin</creator><creator>Du, Pei Rong</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20121129</creationdate><title>Three-Dimensional Two Material Transportation Method Based on the Volume Fractions Interface Algorithm</title><author>Tong, Yu Ping ; Wu, Ze Yu ; Wu, Ji Lin ; Du, Pei Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-d8e46d4c4a663ac020a04edbb664354016f2efd8be1caac2113f1f121eb166b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Yu Ping</creatorcontrib><creatorcontrib>Wu, Ze Yu</creatorcontrib><creatorcontrib>Wu, Ji Lin</creatorcontrib><creatorcontrib>Du, Pei Rong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Yu Ping</au><au>Wu, Ze Yu</au><au>Wu, Ji Lin</au><au>Du, Pei Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Dimensional Two Material Transportation Method Based on the Volume Fractions Interface Algorithm</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2012-11-29</date><risdate>2012</risdate><volume>238</volume><spage>218</spage><epage>222</epage><pages>218-222</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783037855348</isbn><isbn>3037855347</isbn><abstract>In order to solve the problem of three-dimensional two medium transportation problems of fluid dynamics, the transportation principles of a metal ball moving in constant velocity fields were given. The space district was dispersed into some cuboid Euler cells in the directions of three coordinate axes, along which mediums were transported by turns. The continuous boundary condition was adopted to simulate infinite boundary. The interface reconstruction method in the mixture cells was the volume fractions method. The numerical simulation result indicates that the shape and size of the medium cuboid can keep unchanged basically during the medium transportation. The overspeed transportation problem of the volume fractions method in the course of transportation is pointed out. The research may provide certain reference and guidance for solving the multi-material fluid dynamics problems.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.238.218</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2012-11, Vol.238, p.218-222 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_journals_1442601367 |
source | Scientific.net Journals |
title | Three-Dimensional Two Material Transportation Method Based on the Volume Fractions Interface Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A00%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Dimensional%20Two%20Material%20Transportation%20Method%20Based%20on%20the%20Volume%20Fractions%20Interface%20Algorithm&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Tong,%20Yu%20Ping&rft.date=2012-11-29&rft.volume=238&rft.spage=218&rft.epage=222&rft.pages=218-222&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783037855348&rft.isbn_list=3037855347&rft_id=info:doi/10.4028/www.scientific.net/AMM.238.218&rft_dat=%3Cproquest_cross%3E3101794121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442601367&rft_id=info:pmid/&rfr_iscdi=true |