Three-Dimensional Two Material Transportation Method Based on the Volume Fractions Interface Algorithm

In order to solve the problem of three-dimensional two medium transportation problems of fluid dynamics, the transportation principles of a metal ball moving in constant velocity fields were given. The space district was dispersed into some cuboid Euler cells in the directions of three coordinate ax...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2012-11, Vol.238, p.218-222
Hauptverfasser: Tong, Yu Ping, Wu, Ze Yu, Wu, Ji Lin, Du, Pei Rong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 222
container_issue
container_start_page 218
container_title Applied Mechanics and Materials
container_volume 238
creator Tong, Yu Ping
Wu, Ze Yu
Wu, Ji Lin
Du, Pei Rong
description In order to solve the problem of three-dimensional two medium transportation problems of fluid dynamics, the transportation principles of a metal ball moving in constant velocity fields were given. The space district was dispersed into some cuboid Euler cells in the directions of three coordinate axes, along which mediums were transported by turns. The continuous boundary condition was adopted to simulate infinite boundary. The interface reconstruction method in the mixture cells was the volume fractions method. The numerical simulation result indicates that the shape and size of the medium cuboid can keep unchanged basically during the medium transportation. The overspeed transportation problem of the volume fractions method in the course of transportation is pointed out. The research may provide certain reference and guidance for solving the multi-material fluid dynamics problems.
doi_str_mv 10.4028/www.scientific.net/AMM.238.218
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442601367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101794121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-d8e46d4c4a663ac020a04edbb664354016f2efd8be1caac2113f1f121eb166b83</originalsourceid><addsrcrecordid>eNqNkEtLAzEUhYMPsD7-Q0BwN9O8mqYbsdZXweKmug2ZzI0zpZ3UJKX4702toEtXl8M991zOh9AVJaUgTPW3220ZbQtdal1ryw5SfzyblYyrklF1gHpUSlYMhWKH6GI0VJzwoRoMuFBH3ztSjDiXJ-g0xgUhUlChesjNmwBQ3LUr6GLrO7PE863HM5MgtDsRTBfXPiST8hbPIDW-xrcmQo2zTg3gN7_crAA_BGN3noinXT52xgIeL999aFOzOkfHziwjXPzMM_T6cD-fPBXPL4_Tyfi5sGw0SEWtQMhaWGGk5MYSRgwRUFeVlIIPBKHSMXC1qoBaYyyjlDvqKKNQ5YKV4mfocp-7Dv5jAzHphd-E3CpqKgSThHI5zK7rvcsGH2MAp9ehXZnwqSnRO9Y6s9a_rHVmrTNrnVnrzDoH3OwD0g5PAtv8-fO_iC-jGo-L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442601367</pqid></control><display><type>article</type><title>Three-Dimensional Two Material Transportation Method Based on the Volume Fractions Interface Algorithm</title><source>Scientific.net Journals</source><creator>Tong, Yu Ping ; Wu, Ze Yu ; Wu, Ji Lin ; Du, Pei Rong</creator><creatorcontrib>Tong, Yu Ping ; Wu, Ze Yu ; Wu, Ji Lin ; Du, Pei Rong</creatorcontrib><description>In order to solve the problem of three-dimensional two medium transportation problems of fluid dynamics, the transportation principles of a metal ball moving in constant velocity fields were given. The space district was dispersed into some cuboid Euler cells in the directions of three coordinate axes, along which mediums were transported by turns. The continuous boundary condition was adopted to simulate infinite boundary. The interface reconstruction method in the mixture cells was the volume fractions method. The numerical simulation result indicates that the shape and size of the medium cuboid can keep unchanged basically during the medium transportation. The overspeed transportation problem of the volume fractions method in the course of transportation is pointed out. The research may provide certain reference and guidance for solving the multi-material fluid dynamics problems.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783037855348</identifier><identifier>ISBN: 3037855347</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.238.218</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2012-11, Vol.238, p.218-222</ispartof><rights>2012 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Nov 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c295t-d8e46d4c4a663ac020a04edbb664354016f2efd8be1caac2113f1f121eb166b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2080?width=600</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Tong, Yu Ping</creatorcontrib><creatorcontrib>Wu, Ze Yu</creatorcontrib><creatorcontrib>Wu, Ji Lin</creatorcontrib><creatorcontrib>Du, Pei Rong</creatorcontrib><title>Three-Dimensional Two Material Transportation Method Based on the Volume Fractions Interface Algorithm</title><title>Applied Mechanics and Materials</title><description>In order to solve the problem of three-dimensional two medium transportation problems of fluid dynamics, the transportation principles of a metal ball moving in constant velocity fields were given. The space district was dispersed into some cuboid Euler cells in the directions of three coordinate axes, along which mediums were transported by turns. The continuous boundary condition was adopted to simulate infinite boundary. The interface reconstruction method in the mixture cells was the volume fractions method. The numerical simulation result indicates that the shape and size of the medium cuboid can keep unchanged basically during the medium transportation. The overspeed transportation problem of the volume fractions method in the course of transportation is pointed out. The research may provide certain reference and guidance for solving the multi-material fluid dynamics problems.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783037855348</isbn><isbn>3037855347</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkEtLAzEUhYMPsD7-Q0BwN9O8mqYbsdZXweKmug2ZzI0zpZ3UJKX4702toEtXl8M991zOh9AVJaUgTPW3220ZbQtdal1ryw5SfzyblYyrklF1gHpUSlYMhWKH6GI0VJzwoRoMuFBH3ztSjDiXJ-g0xgUhUlChesjNmwBQ3LUr6GLrO7PE863HM5MgtDsRTBfXPiST8hbPIDW-xrcmQo2zTg3gN7_crAA_BGN3noinXT52xgIeL999aFOzOkfHziwjXPzMM_T6cD-fPBXPL4_Tyfi5sGw0SEWtQMhaWGGk5MYSRgwRUFeVlIIPBKHSMXC1qoBaYyyjlDvqKKNQ5YKV4mfocp-7Dv5jAzHphd-E3CpqKgSThHI5zK7rvcsGH2MAp9ehXZnwqSnRO9Y6s9a_rHVmrTNrnVnrzDoH3OwD0g5PAtv8-fO_iC-jGo-L</recordid><startdate>20121129</startdate><enddate>20121129</enddate><creator>Tong, Yu Ping</creator><creator>Wu, Ze Yu</creator><creator>Wu, Ji Lin</creator><creator>Du, Pei Rong</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20121129</creationdate><title>Three-Dimensional Two Material Transportation Method Based on the Volume Fractions Interface Algorithm</title><author>Tong, Yu Ping ; Wu, Ze Yu ; Wu, Ji Lin ; Du, Pei Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-d8e46d4c4a663ac020a04edbb664354016f2efd8be1caac2113f1f121eb166b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Yu Ping</creatorcontrib><creatorcontrib>Wu, Ze Yu</creatorcontrib><creatorcontrib>Wu, Ji Lin</creatorcontrib><creatorcontrib>Du, Pei Rong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Yu Ping</au><au>Wu, Ze Yu</au><au>Wu, Ji Lin</au><au>Du, Pei Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Dimensional Two Material Transportation Method Based on the Volume Fractions Interface Algorithm</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2012-11-29</date><risdate>2012</risdate><volume>238</volume><spage>218</spage><epage>222</epage><pages>218-222</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783037855348</isbn><isbn>3037855347</isbn><abstract>In order to solve the problem of three-dimensional two medium transportation problems of fluid dynamics, the transportation principles of a metal ball moving in constant velocity fields were given. The space district was dispersed into some cuboid Euler cells in the directions of three coordinate axes, along which mediums were transported by turns. The continuous boundary condition was adopted to simulate infinite boundary. The interface reconstruction method in the mixture cells was the volume fractions method. The numerical simulation result indicates that the shape and size of the medium cuboid can keep unchanged basically during the medium transportation. The overspeed transportation problem of the volume fractions method in the course of transportation is pointed out. The research may provide certain reference and guidance for solving the multi-material fluid dynamics problems.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.238.218</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2012-11, Vol.238, p.218-222
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1442601367
source Scientific.net Journals
title Three-Dimensional Two Material Transportation Method Based on the Volume Fractions Interface Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A00%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Dimensional%20Two%20Material%20Transportation%20Method%20Based%20on%20the%20Volume%20Fractions%20Interface%20Algorithm&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Tong,%20Yu%20Ping&rft.date=2012-11-29&rft.volume=238&rft.spage=218&rft.epage=222&rft.pages=218-222&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783037855348&rft.isbn_list=3037855347&rft_id=info:doi/10.4028/www.scientific.net/AMM.238.218&rft_dat=%3Cproquest_cross%3E3101794121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442601367&rft_id=info:pmid/&rfr_iscdi=true