Data Mining Based Intelligent System for Voting Behavior Analysis

In this study, we report a voting behavior analysis intelligent system based on data mining technology. From previous literature, we have witnessed increasing number of studies applied information technology to facilitate voting behavior analysis. In this study, we built a likely voter identificatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2013-01, Vol.284-287, p.3070-3073
1. Verfasser: Chen, Duen Kai
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3073
container_issue
container_start_page 3070
container_title Applied Mechanics and Materials
container_volume 284-287
creator Chen, Duen Kai
description In this study, we report a voting behavior analysis intelligent system based on data mining technology. From previous literature, we have witnessed increasing number of studies applied information technology to facilitate voting behavior analysis. In this study, we built a likely voter identification model through the use of data mining technology, the classification algorithm used here constructs decision tree model to identify voters and non voters. This model is evaluated by its accuracy and number of attributes used to correctly identify likely voter. Our goal is to try to use just a small number of survey questions while maintaining the accuracy rates of other similar models. This model was built and tested on Taiwan’s Election and Democratization Study (TEDS) data sets. According to the experimental results, the proposed model can improve likely voter identification rate and this finding is consistent with previous studies based on American National Election Studies.
doi_str_mv 10.4028/www.scientific.net/AMM.284-287.3070
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442576580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101688141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2200-e124c4472dff28ab9ed950f91677fff9c54359d85b1f95c7461d07978b6b94fc3</originalsourceid><addsrcrecordid>eNqVkE1PAjEQhhs_EgH9D5t4NLu03W4_joioJBAPflybbreFkmUXt0XCv7eAiV49TCaTefPM5AHgDsGMQMyHu90u89qZJjjrdNaYMBzN5xnmJMWcZTlk8Az0EKU4ZYTjc9DPYc54QRHGF8cFTEWe0yvQ934FISWI8B4YPaigkrlrXLNI7pU3VTJtgqlrt4inkte9D2ad2LZLPtpwzJil-nJxHjWq3nvnr8GlVbU3Nz99AN4fJ2_j53T28jQdj2apxhjC1CBMNCEMV9ZirkphKlFAKxBlzFordEHyQlS8KJEVhWaEogoywXhJS0Gszgfg9sTddO3n1vggV-22i094iQjBBaMFhzE1PqV013rfGSs3nVurbi8RlAeRMoqUvyJlFCmjSBlFxmLyIDJSJidK6FQTDejln2P_4HwDuZGDZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442576580</pqid></control><display><type>article</type><title>Data Mining Based Intelligent System for Voting Behavior Analysis</title><source>Scientific.net Journals</source><creator>Chen, Duen Kai</creator><creatorcontrib>Chen, Duen Kai</creatorcontrib><description>In this study, we report a voting behavior analysis intelligent system based on data mining technology. From previous literature, we have witnessed increasing number of studies applied information technology to facilitate voting behavior analysis. In this study, we built a likely voter identification model through the use of data mining technology, the classification algorithm used here constructs decision tree model to identify voters and non voters. This model is evaluated by its accuracy and number of attributes used to correctly identify likely voter. Our goal is to try to use just a small number of survey questions while maintaining the accuracy rates of other similar models. This model was built and tested on Taiwan’s Election and Democratization Study (TEDS) data sets. According to the experimental results, the proposed model can improve likely voter identification rate and this finding is consistent with previous studies based on American National Election Studies.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3037856122</identifier><identifier>ISBN: 9783037856123</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.284-287.3070</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2013-01, Vol.284-287, p.3070-3073</ispartof><rights>2013 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jan 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2200-e124c4472dff28ab9ed950f91677fff9c54359d85b1f95c7461d07978b6b94fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2240?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chen, Duen Kai</creatorcontrib><title>Data Mining Based Intelligent System for Voting Behavior Analysis</title><title>Applied Mechanics and Materials</title><description>In this study, we report a voting behavior analysis intelligent system based on data mining technology. From previous literature, we have witnessed increasing number of studies applied information technology to facilitate voting behavior analysis. In this study, we built a likely voter identification model through the use of data mining technology, the classification algorithm used here constructs decision tree model to identify voters and non voters. This model is evaluated by its accuracy and number of attributes used to correctly identify likely voter. Our goal is to try to use just a small number of survey questions while maintaining the accuracy rates of other similar models. This model was built and tested on Taiwan’s Election and Democratization Study (TEDS) data sets. According to the experimental results, the proposed model can improve likely voter identification rate and this finding is consistent with previous studies based on American National Election Studies.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3037856122</isbn><isbn>9783037856123</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqVkE1PAjEQhhs_EgH9D5t4NLu03W4_joioJBAPflybbreFkmUXt0XCv7eAiV49TCaTefPM5AHgDsGMQMyHu90u89qZJjjrdNaYMBzN5xnmJMWcZTlk8Az0EKU4ZYTjc9DPYc54QRHGF8cFTEWe0yvQ934FISWI8B4YPaigkrlrXLNI7pU3VTJtgqlrt4inkte9D2ad2LZLPtpwzJil-nJxHjWq3nvnr8GlVbU3Nz99AN4fJ2_j53T28jQdj2apxhjC1CBMNCEMV9ZirkphKlFAKxBlzFordEHyQlS8KJEVhWaEogoywXhJS0Gszgfg9sTddO3n1vggV-22i094iQjBBaMFhzE1PqV013rfGSs3nVurbi8RlAeRMoqUvyJlFCmjSBlFxmLyIDJSJidK6FQTDejln2P_4HwDuZGDZw</recordid><startdate>20130125</startdate><enddate>20130125</enddate><creator>Chen, Duen Kai</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20130125</creationdate><title>Data Mining Based Intelligent System for Voting Behavior Analysis</title><author>Chen, Duen Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2200-e124c4472dff28ab9ed950f91677fff9c54359d85b1f95c7461d07978b6b94fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Duen Kai</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Duen Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Mining Based Intelligent System for Voting Behavior Analysis</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2013-01-25</date><risdate>2013</risdate><volume>284-287</volume><spage>3070</spage><epage>3073</epage><pages>3070-3073</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3037856122</isbn><isbn>9783037856123</isbn><abstract>In this study, we report a voting behavior analysis intelligent system based on data mining technology. From previous literature, we have witnessed increasing number of studies applied information technology to facilitate voting behavior analysis. In this study, we built a likely voter identification model through the use of data mining technology, the classification algorithm used here constructs decision tree model to identify voters and non voters. This model is evaluated by its accuracy and number of attributes used to correctly identify likely voter. Our goal is to try to use just a small number of survey questions while maintaining the accuracy rates of other similar models. This model was built and tested on Taiwan’s Election and Democratization Study (TEDS) data sets. According to the experimental results, the proposed model can improve likely voter identification rate and this finding is consistent with previous studies based on American National Election Studies.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.284-287.3070</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2013-01, Vol.284-287, p.3070-3073
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1442576580
source Scientific.net Journals
title Data Mining Based Intelligent System for Voting Behavior Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T01%3A59%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Mining%20Based%20Intelligent%20System%20for%20Voting%20Behavior%20Analysis&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Chen,%20Duen%20Kai&rft.date=2013-01-25&rft.volume=284-287&rft.spage=3070&rft.epage=3073&rft.pages=3070-3073&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3037856122&rft.isbn_list=9783037856123&rft_id=info:doi/10.4028/www.scientific.net/AMM.284-287.3070&rft_dat=%3Cproquest_cross%3E3101688141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442576580&rft_id=info:pmid/&rfr_iscdi=true