Classification Algorithm for Naïve Bayes Based on Validity and Correlation
Naïve Bayes classification algorithm based on validity (NBCABV) optimizes the training data by eliminating the noise samples of training data with validity to improve the effect of classification, while it ignores the associations of properties. In consideration of the associations of properties, an...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2013-02, Vol.303-306, p.1609-1612 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1612 |
---|---|
container_issue | |
container_start_page | 1609 |
container_title | Applied Mechanics and Materials |
container_volume | 303-306 |
creator | Zhu, Xiao Dan Huang, Juan Juan Dong, Huai Lin Wu, Qing Feng |
description | Naïve Bayes classification algorithm based on validity (NBCABV) optimizes the training data by eliminating the noise samples of training data with validity to improve the effect of classification, while it ignores the associations of properties. In consideration of the associations of properties, an improved method that is classification algorithm for Naïve Bayes based on validity and correlation (CANBBVC) is proposed to delete more noise samples with validity and correlation, thus resulting in better classification performance. Experimental results show this model has higher classification accuracy comparing the one based on validity solely. |
doi_str_mv | 10.4028/www.scientific.net/AMM.303-306.1609 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1442520593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101415561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-444bab6896c522c6101fcc0dc67f546b9176e6c1c6d2b47f1aea2a21046a3e913</originalsourceid><addsrcrecordid>eNqVkEtOwzAQQC0-Em3hDpFYoqT-ZZIsS1Q-ooUNsLVcx6Gu0qTYLlVPxSG4GG6LBFsWM7OYmTeah9AVwQnHNB9uNpvEKaNbb2qjklb74Wg6TRhmMcOQEMDFEeoRABpnPKfHqB9aWZ5CSsnJvoHjgjE4Q33nFhgDJzzvoYeykc7tkNKbro1GzVtnjZ8vo7qz0aP8-vzQ0bXcahey01UUZl5lYyrjt5Fsq6jsrNXNfvkcndaycfripw7Qy834ubyLJ0-39-VoEiuGUx9zzmdyBnkBKqVUAcGkVgpXCrI65TArSAYaFFFQ0RnPaiK1pJISzEEyXRA2QJcH7sp272vtvFh0a9uGk4JwTlOK0_DpAJWHKWU756yuxcqapbRbQbDYKRVBqfhVKoJSEZSK4C0EiJ3SQBkfKN7K1nmt5n-O_YPzDdddh-0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442520593</pqid></control><display><type>article</type><title>Classification Algorithm for Naïve Bayes Based on Validity and Correlation</title><source>Scientific.net Journals</source><creator>Zhu, Xiao Dan ; Huang, Juan Juan ; Dong, Huai Lin ; Wu, Qing Feng</creator><creatorcontrib>Zhu, Xiao Dan ; Huang, Juan Juan ; Dong, Huai Lin ; Wu, Qing Feng</creatorcontrib><description>Naïve Bayes classification algorithm based on validity (NBCABV) optimizes the training data by eliminating the noise samples of training data with validity to improve the effect of classification, while it ignores the associations of properties. In consideration of the associations of properties, an improved method that is classification algorithm for Naïve Bayes based on validity and correlation (CANBBVC) is proposed to delete more noise samples with validity and correlation, thus resulting in better classification performance. Experimental results show this model has higher classification accuracy comparing the one based on validity solely.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3037856521</identifier><identifier>ISBN: 9783037856529</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.303-306.1609</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2013-02, Vol.303-306, p.1609-1612</ispartof><rights>2013 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Feb 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c305t-444bab6896c522c6101fcc0dc67f546b9176e6c1c6d2b47f1aea2a21046a3e913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2308?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhu, Xiao Dan</creatorcontrib><creatorcontrib>Huang, Juan Juan</creatorcontrib><creatorcontrib>Dong, Huai Lin</creatorcontrib><creatorcontrib>Wu, Qing Feng</creatorcontrib><title>Classification Algorithm for Naïve Bayes Based on Validity and Correlation</title><title>Applied Mechanics and Materials</title><description>Naïve Bayes classification algorithm based on validity (NBCABV) optimizes the training data by eliminating the noise samples of training data with validity to improve the effect of classification, while it ignores the associations of properties. In consideration of the associations of properties, an improved method that is classification algorithm for Naïve Bayes based on validity and correlation (CANBBVC) is proposed to delete more noise samples with validity and correlation, thus resulting in better classification performance. Experimental results show this model has higher classification accuracy comparing the one based on validity solely.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3037856521</isbn><isbn>9783037856529</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqVkEtOwzAQQC0-Em3hDpFYoqT-ZZIsS1Q-ooUNsLVcx6Gu0qTYLlVPxSG4GG6LBFsWM7OYmTeah9AVwQnHNB9uNpvEKaNbb2qjklb74Wg6TRhmMcOQEMDFEeoRABpnPKfHqB9aWZ5CSsnJvoHjgjE4Q33nFhgDJzzvoYeykc7tkNKbro1GzVtnjZ8vo7qz0aP8-vzQ0bXcahey01UUZl5lYyrjt5Fsq6jsrNXNfvkcndaycfripw7Qy834ubyLJ0-39-VoEiuGUx9zzmdyBnkBKqVUAcGkVgpXCrI65TArSAYaFFFQ0RnPaiK1pJISzEEyXRA2QJcH7sp272vtvFh0a9uGk4JwTlOK0_DpAJWHKWU756yuxcqapbRbQbDYKRVBqfhVKoJSEZSK4C0EiJ3SQBkfKN7K1nmt5n-O_YPzDdddh-0</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Zhu, Xiao Dan</creator><creator>Huang, Juan Juan</creator><creator>Dong, Huai Lin</creator><creator>Wu, Qing Feng</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130201</creationdate><title>Classification Algorithm for Naïve Bayes Based on Validity and Correlation</title><author>Zhu, Xiao Dan ; Huang, Juan Juan ; Dong, Huai Lin ; Wu, Qing Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-444bab6896c522c6101fcc0dc67f546b9176e6c1c6d2b47f1aea2a21046a3e913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xiao Dan</creatorcontrib><creatorcontrib>Huang, Juan Juan</creatorcontrib><creatorcontrib>Dong, Huai Lin</creatorcontrib><creatorcontrib>Wu, Qing Feng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Xiao Dan</au><au>Huang, Juan Juan</au><au>Dong, Huai Lin</au><au>Wu, Qing Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification Algorithm for Naïve Bayes Based on Validity and Correlation</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>303-306</volume><spage>1609</spage><epage>1612</epage><pages>1609-1612</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3037856521</isbn><isbn>9783037856529</isbn><abstract>Naïve Bayes classification algorithm based on validity (NBCABV) optimizes the training data by eliminating the noise samples of training data with validity to improve the effect of classification, while it ignores the associations of properties. In consideration of the associations of properties, an improved method that is classification algorithm for Naïve Bayes based on validity and correlation (CANBBVC) is proposed to delete more noise samples with validity and correlation, thus resulting in better classification performance. Experimental results show this model has higher classification accuracy comparing the one based on validity solely.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.303-306.1609</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2013-02, Vol.303-306, p.1609-1612 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_journals_1442520593 |
source | Scientific.net Journals |
title | Classification Algorithm for Naïve Bayes Based on Validity and Correlation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A08%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20Algorithm%20for%20Na%C3%AFve%20Bayes%20Based%20on%20Validity%20and%20Correlation&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Zhu,%20Xiao%20Dan&rft.date=2013-02-01&rft.volume=303-306&rft.spage=1609&rft.epage=1612&rft.pages=1609-1612&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3037856521&rft.isbn_list=9783037856529&rft_id=info:doi/10.4028/www.scientific.net/AMM.303-306.1609&rft_dat=%3Cproquest_cross%3E3101415561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442520593&rft_id=info:pmid/&rfr_iscdi=true |